Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (1): 95-100    DOI: 10.13523/j.cb.20160113
    
Progress in Researches of Ripening Related Mutants in Tomato Fruit
WANG Xiao-lin, CAO Dong-yan, DONG Jin, TIAN Hui-qin, ZHU Ben-zhong
College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
Download: HTML   PDF(385KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

As a kind of important economic crops, tomato has very-high nutritional value, and is always one of the model organisms to study the growth and maturation of fleshy fruit. In recent years, many tomato fruit ripening mutant were found, which provides important biomaterials for clarifying mechanism of fruit ripening. The factors affecting tomato fruit ripening, fruit ripening related mutants and researches of fruit ripening based on these mutants to provide reference for future researches of mutant and fruit ripening mechanism.



Key wordsRipening mechanism      Tomato      Mutant      Fruit ripening     
Received: 10 July 2015      Published: 11 January 2016
ZTFLH:  Q112  
Cite this article:

WANG Xiao-lin, CAO Dong-yan, DONG Jin, TIAN Hui-qin, ZHU Ben-zhong. Progress in Researches of Ripening Related Mutants in Tomato Fruit. China Biotechnology, 2016, 36(1): 95-100.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20160113     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I1/95

[1] Moore S, Vrebalov J, Payton P, et al. Use of genomics tools to isolate key ripening genes and analyse fruit maturation in tomato. J Exp Bot, 2002, 53(377): 2023-2030.
[2] Giovannoni J J. Fruit ripening mutants yield insights into ripening control. Curr Opin Plant Biol, 2007, 10(3): 283-289.
[3] Aoki K, Yano K, Suzuki A, et al. Large-scale analysis of full-length cDNAs from the tomato (Solanum lycopersicum) cultivar Micro-Tom, a reference system for the Solanaceae genomics. BMC Genomics, 2010, 11(210): 210.
[4] Paolo P, Chiara M, Monica C, et al. Genetic regulation and structural changes during tomato fruit development and ripening. Front Plant Sci, 2014, 124(5): 1-14.
[5] Giovannoni J J. Genetic regulation of fruit development and ripening. Plant Cell, 2004, 16(Suppl.1): 170-180.
[6] Shima Y, Fujisawa M, Kitagawa M, et al. Tomato FRUITFULL homologs regulate fruit ripening via ethylene biosynthesis. Bios Biotechnol Biochem, 2014, 78(2): 231-237.
[7] Osorio S, Scossa F, Fernie A R. Molecular regulation of fruit ripening. Plant Sci, 2013, 4(198): 198.
[8] Bemer M, Karlova R, Ballester A R, et al. The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening. Plant Cell,2012, 24(11): 4437-4451.
[9] Chung M Y, Vrebalov J, Alba R, et al. A tomato(Solanum lycopersicum)APETALA2/ERF gene,SlAP2a,is a negative regulator of fruit ripening. Plant J, 2010, 64(6): 936-947.
[10] Ito Y, Kitagawa M, Ihashi N, et al. DNA-binding specificity,transcriptional activation potential,and the rinmutation effect for the tomato fruit-ripening regulator RIN. Plant J,2008, 55(2): 212-223.
[11] Lee J M, Joung J G, McQuinn R, et al. Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation. Plant J, 2012, 70(2): 191-204.
[12] Vrebalov J, Ruezinsky D, Padmanabhan V, et al. A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science, 2002, 296(5566): 343-346.
[13] Manning K, Tör M, Poole M, et al. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet, 2006, 38(8): 948-952.
[14] Giovannoni J J, Noensie E N, Ruezinsky D M, et al. Molecular genetic analysis of the ripening-inhibitor and non-ripening loci of tomato: a first step in genetic map-based cloning of fruit ripening genes. Mol Gen Genet, 1995, 248(2): 195-206.
[15] Lanahan M B, Yen H C, Giovannoni J J, et al. The Never-ripe mutation blocks ethylene perception in tomato. Plant Cell, 1994, 6(4): 521-530.
[16] Yen H C, Lee S, Tanksley S D, et al. The tomato Never-ripe locus regulates ethylene-inducible gene expression and is linked to a homolog of the Arabidopsis ETR1 gene. Plant Physiol, 1995, 107(4): 1343-1353.
[17] Barry C S, Giovannoni J J. Ripening in the tomato Green-ripe mutant is inhibited by ectopic expression of a protein that disrupts ethylene signaling. PANS, 2006, 103(20): 7923-7928.
[18] Peters J L, Schreuder M E L, Verduin S J W, et al. Physiological characterization of high pigment mutant of tomato. Photochem Photobiol, 1992, 56(1): 75-82.
[19] Peters J L, Szell M, Kendrick R E. The expression of light-regulated genes in the high-pigment-1 mutant of tomato. Plant Physiol, 1998, 117(3): 797-807.
[20] Mustilli A C, Fenzi F, Ciliento R, et al. Phenotype of the tomato high pigment-2 mutant is caused by a mutation in the tomato homolog of DEETIOLATED1. Plant Cell, 1999, 11(2): 145-157.
[21] Giménez E, Pineda B, Capel J, et al. Functional analysis of the Arlequin mutant corroborates the essential role of the ARLEQUIN/TAGL1 gene during reproductive development of tomato. PLoS One, 2010, 5(12): e14427.
[22] Barry C S, Ryan P M, Chung M Y, et al. Amino acid substitutions in homologs of the STAY-GREEN protein are responsible for the green-flesh and chlorophyll retainer mutations of tomato and pepper. Plant Physiol, 2008, 147(1): 179-187.
[23] Zechmeister L, LeRosen A L, Went F W, et al. Prolycopene, a naturally occurring stereoisomer of lycopene. Proc Natl Acad Sci, 1941, 27(10): 468-474.
[24] Tomes M L, Quackenbush F W, Nelson O E, et al. The inheritance of carotenoid pigment system in the tomato. Genetics, 1953, 38(12): 117-127.
[25] Ray J, Moureau P, Bird C, et al. Cloning and characterization of a gene involved in phytoene synthesis from tomato. Plant Mol Biol, 1992, 19(3): 401-404.
[26] Fray R G, Grierson D. Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Mol Biol, 1993, 22(4): 589-602.
[27] Ronen G, Cohen M, Zamir D, et al. Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta. Plant J, 1999, 17(4): 341-351.
[28] Ronen G, Carmel-Goren L, Zamir D, et al. An alternative pathway to β-carotene formation in plant chromoplasts discovered by map-based cloning of beta and old-gold color mutations in tomato. Proc Natl Acad Sci, 2000, 97(20): 11102-11107.
[29] Mutschler M A. Ripening and storage characteristics of the 'alcobaca' ripening mutant in tomato. J Am Soc Hortic Sci, 1984, 109(4): 504-507.
[30] Mutschler M A. Inheritance and linkage of the 'alcobaca' ripening mutant in tomato. J Am Soc Hortic Sci, 1984, 109(4): 500-503.
[31] Powell A L, Nguyen C V, Hill T, et al. Uniform ripening encodes a Golden 2-like transcription factor regulating tomato fruit chloroplast development. Science, 2012, 336(6089): 1711-1715.
[32] Bohn G W, Scott D H. A 2nd gene for uniform unripe fruit color in the tomato. J Hered, 1945, 36(6): 169-172.
[33] Lindstrom E W. Inheritance in tomatoes. Genetics, 1925, 10(5): 305-317.
[34] Rick C M, Butler L. Cytogenetics of the tomato. Adv Genet, 1956, 8: 267-382.
[35] Klee H J, Giovannoni J J. Genetics and control of tomato fruit ripening and quality attributes. Annu Rev Genet, 2011, 45: 41-59.
[36] Pan I L, McQuinn R, Giovannoni J J, et al. Functional diversification of AGAMOUS lineage genes in regulating tomato flower and fruit development. J Exp Bot, 2010, 61(6): 1795-1806.
[37] Vrebalov J, Pan I L, Arroyo A J M, et al. Fleshy fruit expansion and ripening are regulated by the tomato SHATTERPROOF gene TAGL1 . Plant Cell, 2009, 21(10): 3041-3062.
[38] Itkin M, Seybold H, Breitel D, et al. TOMATO AGAMOUS-LIKE 1 is a component of the fruit ripening regulatory network. Plant J, 2009, 60(6): 1081-1095.
[39] Tigchelaar E C, McGlasson W B, Buescher R W. Genetic regulation of tomato fruit ripening. HortScience, 1978, 13: 508-513.
[40] Fujisawa M, Nakano T, Ito Y. Identification of potential target genes for the tomato fruit-ripening regulator RIN by chromatin immunoprecipitation. BMC Plant Biol, 2011, 11(26): 1-14.
[41] Fujisawa M, Shima Y, Higuchi N, et al. Direct targets of the tomato-ripening regulator RIN identified by transcriptome and chromatin immunoprecipitation analyses. Planta, 2012, 235(6): 1107-1122.
[42] Fujisawa M, Nakano T, Shima Y, et al. A large-scale identification of direct targets of the tomato MADS box transcription factor RIPENING INHIBITOR reveals the regulation of fruit ripening. Plant Cell, 2013, 25(2): 371-386.
[43] Martel C, Vrebalov J, Tafelmeyer P, et al. The tomato MADS-box transcription factor RIPENING INHIBITOR interacts with promoters involved in numerous ripening processes in a COLORLESS NONRIPENING-dependent manner. Plant Physiol, 2011, 157(3): 1568-1579.
[44] Qin G Z, Wang Y Y, Cao B H, et al. Unraveling the regulatory network of the MADS box transcription factor RIN in fruit ripening. Plant J, 2012, 70(2): 243-255.
[45] Zhong S L, Zhang J F, Chen Y R, et al. Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nat Biotechnol, 2013, 31(2): 154-159.
[46] Barry C S, McQuinn R P, Thompson A J, et al. Ethylene insensitivity conferred by the Green-ripe and Never-ripe 2 ripening mutants of tomato. Plant Physiol, 2005, 138(1): 267-275.
[47] Akhtar M S, Goldschmidt E E, John I, et al. Altered patterns of senescence and ripening in gf, a stay-green mutant of tomato (Lycopersicon esculentum Mill.). J Exp Bot, 1999, 50(336):1115-1122.
[48] Cheung A Y, McNellis T, Piekos B. Maintenance of chloroplast components during chromoplast differentiation in the tomato mutant green flesh. Plant Physiol, 1993, 101(4): 1223-1229.
[49] Tanksley S D, Ganal M W, Prince J P, et al. High density molecular linkage maps of the tomato and potato genomes. Genetics, 1992, 132(4): 1141-1160.
[50] Isaacson T, Ronen G, Zamir D, et al. Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of β-carotene and xanthophylls in plants. Plant Cell, 2002, 14(2): 333-342.
[51] Isaacson T, Ohad I, Beyer P, et al. Analysis in vitro of the enzyme CRTISO establishes a poly-cis-carotenoid biosynthesis pathway in plants. Plant Physiol, 2004, 136(4): 4246-4255.
[52] Galpaz N, Ronen G, Khalfa Z, et al. A chromoplast-specific carotenoid biosynthesis pathway is revealed by cloning of the tomato white-flower locus. Plant Cell, 2006, 18(8): 1947-1960.
[53] Liu Y, Roof S, Ye Z, et al. Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proc Natl Acad Sci, 2004, 101(26): 9897-9902.
[54] Satya S N, William L H, Chelsey L K, et al. KNOX genes influence a gradient of fruit chloroplast development through regulation of GOLDEN2-LIKE expression in tomato. Plant J, 2014, 78(6): 1022-1033.
[55] Schroeder D F, Gahrtz M, Maxwell B B, et al. De-etiolated 1 and damaged DNA binding protein 1 interact to regulate Arabidopsis photomorphogenesis. Curr Biol, 2002, 12(7): 1462-1472.
[56] Benvenuto G, Formiggini F, Laflamme P, et al. The photomorphogenesis regulator DET1 binds the amino-terminal tail of histone H2B in a nucleosome context. Curr Biol, 2002, 12(7): 1529-1534.

[1] YANG Xi,LUAN Yu-shi. Preliminary Study of Sly-miR399 in Tomato Resistance to Late Blight[J]. China Biotechnology, 2021, 41(11): 23-31.
[2] YANG Lin,WANG Liu-yue,LI Hui-mei,CHEN Hua-bo. Multi-site Specific Mutagenesis by Multi-fragment Overlap Extension PCR[J]. China Biotechnology, 2019, 39(8): 52-58.
[3] Jing-li WANG,Zhen-zhen DING,Hui LIU,Yan-ting TANG. Development and Application of the Binding Assay for Tomato Spotted Wilt Virus Nucleoprotein Using Fluorescent Polarization Technology[J]. China Biotechnology, 2018, 38(11): 18-24.
[4] YANG Jian-wei, XUE Zheng-lian, ZHU Hao, YANG Meng, WANG Zhou. Study on the Mutagenic Effect of Phospholipase A1 Recombinant Plasmid by ARTP[J]. China Biotechnology, 2017, 37(6): 78-85.
[5] CHENG Ke-li, LIU Xiao, LI Su-xia. Study on High-level Expression and Characterization of a V125T V8 Protease Mutant with Tolerance to SDS[J]. China Biotechnology, 2017, 37(4): 56-67.
[6] LI Xue-qing, YUAN Feng-jiau, CHENG Jian-qing, DONG Yun-hai, LI Jian-fang, WU Min-chen. Effect of Amino Acid H321 on the Enzymatic Properties of Hybrid β-Mannanase AuMan5Aloop[J]. China Biotechnology, 2017, 37(2): 48-53.
[7] REN Shuang, ZHU Hong-liang. Establishment of Taqman Quantitative PCR System to Estimate Copy Numbers of Exogenous Transgene in Genome Edited Tomato[J]. China Biotechnology, 2017, 37(10): 72-80.
[8] CHEN Bing, KONG Ling-jiao, LEI Jin-xia, SHEN Lu, ZHANG Cai, WANG Jin-hua. BMP9 Induces Osteogenic/odontogenic Differentiation of ISCAP through the Smad Pathway[J]. China Biotechnology, 2016, 36(8): 16-22.
[9] CUI Cheng-cheng, BI Yan-hong, WANG Ying-ming, LI Pan, YANG Si-da, HUANG Fen, ZENG Wei-kun, JING Shen-rong. Screening of ER3 Sequences Enhanced Protein Expression Activity and Its Functional Regions Identification[J]. China Biotechnology, 2015, 35(3): 18-24.
[10] LI Hui, XUE Wei, SUN Xue-song. Ferrichrome Binding Characteristics of Wild Type-and Mutant FtsBs in Streptococcus pyogenes[J]. China Biotechnology, 2015, 35(10): 32-38.
[11] XIE Wen-qi, MA San-mei, WANG Yong-fei, SUN Xiao-wu. Status, Problems and Strategies of Transgenic Tomatoes for Oral Vaccine[J]. China Biotechnology, 2014, 34(10): 94-100.
[12] GAO Guang-jun, KE Yue-hua, XU Jie, WANG Li-ping, ZHANG Zhen-fang, LI Zhuo-ling, GUO Ying-fei, WANG Lu-lu, WANG Yu-fei, XU Xing-ran, CHEN Ze-liang. Construction of B.ovis virB Mutant and Analysis the Intracellular Environmental Adaptations[J]. China Biotechnology, 2012, 32(11): 86-91.
[13] GAO Guang-jun, KE Yue-hua, XU Jie, WANG Li-ping, ZHANG Zhen-fang, LI Zhuo-ling, GUO Ying-fei, WANG Lu-lu, WANG Yu-fei, XU Xing-ran, CHEN Ze-liang. Construction of B.ovis virB Mutant and Analysis the Intracellular Environmental Adaptations[J]. China Biotechnology, 2012, 32(11): 86-91.
[14] TIAN Jin-hong, LIU Qi, ZHAN Li-ping, ZHOU Ze-yang. Visualization of Mutation to Structure Homologous Modeling, Site-Directed Mutagenesis and Express D-Lactate Dehydrogenase from Aquifex aeolicus[J]. China Biotechnology, 2012, 32(05): 73-78.
[15] TIAN Ya-rong, WANG Ying-hui, XU Mei-ai, LIN Jun, LIN Juan, YE Xiu-yun. Construction and Evaluation of a Directed Evolution Library of Catalase[J]. China Biotechnology, 2011, 31(9): 82-87.