Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (1): 55-62    DOI: 10.13523/j.cb.20160108
    
Establishment of p62/SQSTM1-luciferase Based Method for Cellular Autophagic Flux Determination
ZHAO Yuan-bo1,2, HONGDu Bei-qi2,3, CHEN Ying-yu2,3
1. Department of Chemical Biology, School of Biology & Engineering, Guizhou Medical University, Guiyang 550025, China;
2. Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing 100191, China;
3. Center for Human Disease Genomics, Health Science Center, Peking University, Beijing 100191, China
Download: HTML   PDF(1207KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Autophagy is a cellular activity of bulk degradation of cellular components through lysosome. Many autophagy-related genes (ATG), which involved with autophagic process, have been discovered. But many details in this conserved cellular process still remain unknown. The discovery of new molecules involved in the autophagic process will shed insightful light on our knowledge about this cellular metabolic process. A fusion expression recombinant (p62/SQSTM1-luc) combined with both selective autophagic substrate SQSTM1 (Sequestosome 1) and firefly luciferase reporter gene was constructed. SQSTM1-luc was tested as a qualified luciferase-based autophagy-monitor method. This method was optimized by the construction of stable SQSTM1-luc expressing HeLa cells. It has been proved that this is a convenient method that is applicable to screening for autophagy-related genes.



Key wordsAutophagy      Luciferase      SQSTM1      p62     
Received: 11 June 2015      Published: 11 January 2016
ZTFLH:  Q251  
Cite this article:

ZHAO Yuan-bo, HONGDu Bei-qi, CHEN Ying-yu. Establishment of p62/SQSTM1-luciferase Based Method for Cellular Autophagic Flux Determination. China Biotechnology, 2016, 36(1): 55-62.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20160108     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I1/55

[1] Mizushima N, Kmomatsu M. Autophagy: renovation of cells and tissues. Cell, 2011, 147(4):728-741.
[2] Mizushima N, Levine B, Cuervo A M, et al. Autophagy fights disease through cellular self-digestion. Nature, 2008, 451(7182): 1069-1075.
[3] Klionsky D J, Cregg J M, Dunn W A, et al. A unified nomenclature for yeast autophagy-related genes. Dev Cell, 2003, 5(4): 539-545.
[4] Nakatogawa H, Suzuki K, Kamada Y, et al. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol, 2009, 10(7): 458-467.
[5] Christian B, Mathew E S, Steven P G, et al. Network organization of the human autophagy system. Nature, 2010, 466(7302): 68-77.
[6] Levine B, Klionsky D J. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Developmental Cell, 2004, 6(4): 463-477.
[7] Chen Y, Klionsky D J. The regulation of autophagy - unanswered questions. J Cell Sci, 2011, 124(Pt2): 161-170.
[8] Johansen T, Lamark T. Selective autophagy mediated by autophagic adapter proteins. Autophagy, 2011, 7(3): 279-296.
[9] Noda N, Ohsumi Y, Inagaki F. Atg8-family interacting motif crucial for selective autophagy. FEBS Letters,2010, 584(7): 1379-1385.
[10] Klionsky D J. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012,8(4):1-100.
[11] Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell, 2010, 140(3): 313-326.
[12] Larsen K B, Lamark T, Øvervatn A, et al. A reporter cell system to monitor autophagy based on p62/SQSTM1. Autophagy, 2010, 6(6): 784-793.
[13] Fujita N, Hayashi M, Fukumoto H, et al. An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Mol Biol Cell, 2008, 19(11): 4651-4659.
[14] Tanida I, Sou Y S, Ezaki J, et al. HsAtg4B/HsApg4B/autophagin-1 cleaves the carboxyl termini of three human Atg8 homologues and delipidates microtubule-associated protein light chain 3-and GABAA receptor-associated protein-phospholipid conjugates. J Biol Chem, 2004, 279(35): 36268-36276.
[15] Kuballa P, Nolte W M, Castoreno A B, et al. Autophagy and the immune system. Annu Rev Immunol, 2012, 30: 611-646.
[16] Lipinski M M, Hoffman G, Ng A, et al. A genome-wide siRNA screen reveals multiple mTORC1 independent signaling pathways regulating autophagy under normal nutritional conditions. Dev Cell, 2010, 18(6): 1041-1052.
[17] McKnight N C, Jefferies H B, Alemu E A, et al. Genome-wide siRNA screen reveals amino acid starvation-induced autophagy requires SCOC and WAC. EMBO J, 2012, 31(8): 1931-1946.
[18] Ju J S, Miller S E, Jackson E, et al. Quantitation of selective autophagic protein aggregate degradation in vitro and in vivo using luciferase reporters. Autophagy, 2009, 5(4): 511-519.
[19] Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J, 2000, 19(21): 5720-5728.
[20] Mizushima N, Yoshimori T. How to interpret LC3 immunoblotting. Autophagy, 2007, 3(6): 542-545.
[21] Rubinsztein D C, Cuervo A M, Ravikumar B, et al. In search of an "autophagomometer". Autophagy, 2009, 5(5): 585-589.
[22] Li M, Chen X, Ye Q Z, et al. A high-throughput FRET-based assay for determination of Atg4 activity. Autophagy, 2012, 8: 1-12.
[23] Shu C W, Madiraju C, Zhai D, et al. High-throughput fluorescence assay for small-molecule inhibitors of autophagins/Atg4. J Biomol Screen, 2011, 16(2): 174-182.
[24] Farkas T, Hyer-Hansen M, Jäättelä M. Identification of novel autophagy regulators by a luciferase-based assay for the kinetics of autophagic flux. Autophagy, 2009, 5(7): 1018-1025.
[25] Moscat J, Diaz-Meco M T. P62 at the crossroads of autophagy, apoptosis, and cancer. Cell, 2009, 137(6): 1001-1004.
[26] Wooten M W, Geetha T, Seibenhener M L, et al. The p62 scaffold regulates nerve growth factor-induced NF-κB activation by influencing TRAF6 polyubiquitination. J Biol Chem,2005,280(42):35625-35629.
[27] Watanabe Y, Tanaka M. p62/SQSTM1 in autophagic clearance of a non-ubiquitylated substrate. J Cell Sci, 2011, 124(Pt16): 2692-2701.
[28] Nakaso K, Yoshimoto Y, Nakano T, et al. Transcriptional activation of p62/A170/ZIP during the formation of the aggregates: possible mechanisms and the role in Lewy body formation in Parkinson's disease. Brain Res, 2004, 1012(1-2): 42-51.
[29] Seibenhener M L, Geetha T, Wooten M W. Sequestosome 1/p62--more than just a scaffold. FEBS Lett, 2007, 581(2): 175-179.
[30] He P, Peng Z, Luo Y, et al. High-throughput functional screening for autophagy-related genes and identification of TM9SF1 as an autophagosome-inducing gene. Autophagy, 2009, 5(4):52-60.
[31] Zhao Y B, Hu J, Miao G Y, et al. Transmembrane protein 208: a novel ER-localized protein that regulates autophagy and ER stress. PLoS One, 2013,8(5): e64228.
[32] Zhao Y B, Hongdu B Q, Ma D L. Really interesting new gene finger protein 121 is a novel Golgi-localized membrane protein that regulates apoptosis. Acta Biochim Biophys Sin, 2014, 46(8): 668-674.

[1] LI Xiao-jin,LI Yan-meng,LI Zhen-kun,XU An-jian,YANG Xiao-xi,HUANG Jian. The Mechanism of Copper Accumulation Induced Autophagy in Hepatocytes of ATP7B-deficient Mice Based on RNA-sequencing[J]. China Biotechnology, 2021, 41(9): 10-19.
[2] DONG Xue-ying,LIANG Kai,YE Ke-ying,ZHOU Ce-fan,TANG Jing-feng. Advances in the Regulation of Receptor Tyrosine Kinase on Autophagy[J]. China Biotechnology, 2021, 41(5): 72-78.
[3] CAI Run-ze,WANG Zheng-bo,CHEN Yong-chang. Research Progress of Mecp2 Affecting Metabolic Function in Rett Syndrome[J]. China Biotechnology, 2021, 41(2/3): 89-97.
[4] HAN Xue-yi,LI Yi-fan,LU Yue-da,XIONG Guo-liang,YU Chang-yuan. Preparation of Porphyrin Metal-organic Framework with Autophagy Inhibitory Effect and Its Photodynamic Cancer Treatment[J]. China Biotechnology, 2021, 41(11): 48-54.
[5] ZENG Xiang-Yi,PAN Jie. Progress on Autophagy Regulation of Browning of White Adipose Cells[J]. China Biotechnology, 2020, 40(6): 63-73.
[6] DAI Qi-nan,ZHANG Jing-hong. Advances in Molecular Mechanisms Related to Tumor Multi-drug Resistance, Autophagy, DNA Repair and Tumor Stem Cells[J]. China Biotechnology, 2020, 40(4): 69-77.
[7] ZHU Yongzhao,TAO Jin,REN Meng-meng,XIONG Ran,HE Ya-qin,ZHOU Yu,LU Zhen-hui,DU Yong,YANG Zhi-hong. Autophagy Protects Against Apoptosis of Human Placental Mesenchymal Stem Cells of Fetal Origin Induced by Tumor Necrosis Fator-α[J]. China Biotechnology, 2019, 39(9): 62-67.
[8] Dan-tong HONG,Fan ZHANG,Shu-e WANG,Hong-xia WANG,Kun-mei LIU,Guang-xian XU,Zheng-hao HUO,Le GUO. miR-17-5p Targeting Autophagy Related Protein ATG7 Regulates Macrophages against Mycobacterium tuberculosis Infection[J]. China Biotechnology, 2019, 39(6): 1-8.
[9] Yan LIU,Peng DAI,Yun-feng ZHU. Research Progress of Relationship between Exosomes and Autophagosomes[J]. China Biotechnology, 2019, 39(6): 78-83.
[10] Xiao-yan YANG,Jing-dong MAO,Shu-sen LI,Xin-ying ZHANG,Li-yin DU. Advances in Autophagy on the Regulation of Neutrophil Function[J]. China Biotechnology, 2019, 39(6): 84-90.
[11] Lu WANG,Li-yuan YANG,Yu-ting TANG,Yao TAO,Li LEI,Yi-pei JING,Xue-ke JIANG,Ling ZHANG. Effects of PKM2 Knockdown on Proliferation and Apoptosis of Human Leukemia Cells and Its Potential Mechanism[J]. China Biotechnology, 2019, 39(3): 13-20.
[12] SHEN Bing-lei,WANG Yu-xuan,HAN Shuo,LI Xi,YANG Zhuo-ni-na,ZOU Zi-wen,LIU Juan. Research Progress of Non-coding RNA in Autophagy[J]. China Biotechnology, 2019, 39(12): 56-63.
[13] ZHAN Hui-lu,BAI Ying,ZHUANG Yan,MENG Juan,ZHAO Hai-yang. Research Progress of Autophagy Induced Protection by Nanomaterials[J]. China Biotechnology, 2019, 39(12): 64-72.
[14] LI Sheng. The Induction Effect of Metal Ions for Cell Autophagy[J]. China Biotechnology, 2017, 37(7): 124-132.
[15] ZHU Zhi-jian, LIAN Kai-qi, ZHENG Hai-xue, YANG Xiao-pu. The Research Progress About Invasion of Foot and Mouth Virus to Cells[J]. China Biotechnology, 2015, 35(5): 103-108.