Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2015, Vol. 35 Issue (12): 96-102    DOI: 10.13523/j.cb.20151215
    
Research Progress of Cinnamoyl-CoA Reductase (CCR) Gene in Plants
FAN Fei-fei, LI Jie-qin, ZHAN Qiu-wen, WANG Li-hua, LIU Yan-long
College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
Download: HTML   PDF(540KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Many enzymes involved in the biosynthesis of lignin monomer in plant. Cinnamoyl coenzyme A reductase (cinnamoyl-CoA reductase, CCR) is a key enzyme of the process. The progress of CCR gene cloning, function and expression in plants were summarized. Additionally, the potential of this gene in plant's resistance to pests and stress, forage and energy usage were also described. It provided the foundation for further research and usage of this gene.



Key wordsGene cloning      Plant tissue expression      Lignin cinnamoyl-CoA reductase (CCR)      Gene function     
Received: 30 June 2015      Published: 22 December 2015
ZTFLH:  Q819  
Cite this article:

FAN Fei-fei, LI Jie-qin, ZHAN Qiu-wen, WANG Li-hua, LIU Yan-long. Research Progress of Cinnamoyl-CoA Reductase (CCR) Gene in Plants. China Biotechnology, 2015, 35(12): 96-102.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20151215     OR     https://manu60.magtech.com.cn/biotech/Y2015/V35/I12/96

[1] Zhong R Q, Morrison W H, Himmelsbach D S, et al. Essential role of caffeoyl coenzyme a O-methytransferase in lignin biosynthesis in woody polar plants. Plant physiol, 2000, 124:563-578.
[2] Guo D J, Chen F, Inoue K, et al. Down regulation of caffeic acid 3-O-Methltransferase and caffeoyl CoA3-O-Methltransferase in transgenic alfalfa impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell, 2001, 13:73-88.
[3] Rogers L A, Campbell M M. The genetic control of lignin deposition during plant growth and development. New Phytologist, 2004, 164:17-30.
[4] Miao Y C, Liu C J. ATP-binding cassette-like transporters are involved in the transport of lignin precursors across plasma andvacuolar membranes. PNAS, 2010, 107(52):22728-22733.
[5] 耿飒,徐存拴,李玉昌,等.木质素的生物合成及其调控研究进展.西北植物学报, 2003, 23(1):171-181. Geng S, Xu C S, Li Y C, et al. Advance in biosynthesis of lignin and its regulation. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(1):171-181.
[6] Lacombe E, Hawkins S, Van Doorsselaere J, et al. Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway:cloning, expression and phylogenetic relationships. Plant J, 1997, 11(3):429-441.
[7] Lauvergeat V, Lacomme C, Lacombe E, et al. Two cinnamoyl-CoA reductase (CCR) genes from Arabidopsis thaliana are differentially expressed during development and in response to infection with pathogenic bacteria. Phytochemistry, 2001, 57(7):1187-1195.
[8] 李高,杨杞,张烨,等.柠条锦鸡儿肉桂酰辅酶A还原酶基因克隆和分析.中国生物工程杂志, 2014, 34(1):50-56. Li G, Yang Q, Zhang Y, et al. Caragana korshinkii Kom cinnamon coenzyme A reductase gene cloning and analysis. China Biotechnology, 2014, 34(1):50-56.
[9] Sarni F, Grand C, Boudet A M. Purification and properties of cinnamoyl-CoA reductase and cinnamyl alcohol dehydrogenase from poplar stems (Populus×Euramericana). Biochem, 1984, 139:259-265.
[10] Wengenmayer H, Ebel J, Grisebach H. Enzymic synthesis of lignin precursors. Purification and properties of a cinnamoyl-CoA NADPH reductase from cell suspension cultures of soybean (Glycine max). Biochem., 1976,65:529-536.
[11] Goffner D, Campbell M M, Campargue C, et al. Purification and characterization of cinnamoyl-coenzyme A:NADP oxidoreductase in Eucalyptus gunnii. Plant Physiol, 1994, 106:625-632.
[12] Tamasloukht B, Wong Quai Lam M S, Martinez Y, et al. Characterization of a cinnamoyl-CoA reductase 1(CCR1)mutant in maize:effects on lignification, fibre development, and global gene expression. Journal of Experimental Botany, 2011, 62(11):3837-3848.
[13] Ling F, Raphael L, Shimon G, et al. Progressive Inhibition by water deficit of cell wall extensibility and growth along the elongation zone of maize roots is related to increased lignin metabolism and progressive stelar accumulation of wall phenolics1.Plant Physiol, 2006, 140(2):603-612.
[14] Ma Q H, Tian B. Biochemical characterization of a cinnamoyl-CoA reductase from wheat. Biol Chem, 2005, 386(6):553-560.
[15] Yi Tu. Functional analyses of caffeic acid O-methyltransferase and cinnamoyl-CoA-reductase genes from perennial ryegrass (Lolium perenne). Plant Cell, 2010, 22(10):3357-3373.
[16] Larsen K. Molecular cloning and characterization of cDNAs encoding cinnamoyl CoA reductase (CCR) from barley (Hordeum vulgare) and potato (Solanum tuberosum). Plant Physiol, 2004, 161(1):105-112.
[17] Escamilla-Trevino L L, Shen H, Dixon R A. Switch grass (Panicum virgatum) possesses a divergent family of cinnamoyl CoA reductases with distinct biochemical properties. New Phytol, 2010, 185(1):143-155.
[18] 白勇,巩威,朱玉贤,等.水稻肉桂酰辅酶A还原酶基因的克隆与表达分析.科学通报, 2003, 48(16):1780-1784. Bai Y, Gong W, Zhu Y X, et al. Oryza sativa cinnamon coenzyme A reductase gene cloning and expression analysis. Chinese Science Bulletin, 2003, 48(16):1780-1784.
[19] 李晓荣,王桂凤,席梦利,等.东方百合 LsCCR1基因克隆及表达分析.分子植物育种, 2008, 6(1):141-147. Ling X R, Wang G F, Xi M L, et al. Cloning and expression analysis of the LsCCR1 gene from Lilium Oriental hybrids. Molecular Plant Breeding, 2008, 6(1):141-147.
[20] Zhu Q H, Zhang X Q, Huo S, et al. Cloning and bioinformatic analysis of cinnamoyl-CoA reductase gene (CCR)from Pennisetum purpureum,Agricultural Science & Technology,2012, 13(2):284-291.
[21] Hu Y S, Di P, Chen J.F, et al. Isolation and characterization of a gene encoding cinnamoyl-CoA reductase from Isatis indigotica Fort. Mol Biol Rep, 2011, 38(3):2075-2083.
[22] 张宇,张波,赵志常,等.芒果CCR基因的克隆及其序列分析.华北农学报, 2014, 29:16-19. Zhang Y, Zhang B, Zhao Z C, et al. Cloning and sequence analysis of CCR gene from mango. Acta Agriculturae Boreail-Sinica, 2014, 29:16-19.
[23] 陈尘,王政军,曹鑫林.丹参肉桂酰辅酶A还原酶基因克隆与生物学分析.西北植物学报, 2011, 31(10):1963-1968. Chen C,Wang Z J,Cao X L. Bioinformatics and expression analysis of cinnamoy-l CoA reductase gene from Salvia miltiorrhiza Bunge. Acta Bot Boreal-Occident Sin, 2011, 31(10):1963-1968.
[24] Giordano A, Liu Z, Panter S N, et al. Reduced lignin content and altered lignin composition in the warm season forage grass Paspalum dilatatum by down-regulation of a cinnamoyl CoA reductase gene. Transgenic Res, 2014, 23(3):503-517.
[25] Prashant S, Srilakshmi Sunita M, Pramod S, et al. Down-regulation of Leucaena leucocephala cinnamoyl CoA reductase (LlCCR) gene induces significant changes in phenotype, soluble phenolic pools and lignin in transgenic tobacco. Plant Cell Rep., 2011, 30(12):2215-2231.
[26] Vander Rest B, Danoun S, Boudet A M, et al. Down-regulation of cinnamoyl-CoA reductase in tomato (Solanum lycopersicum L.) induces dramatic changes in soluble phenolic pool. Exp Bot, 2006, 57(6):1399-1411.
[27] Barakat A, Yassin N B, Park J S, et al. Comparative and phylogenomic analyses of cinnamoyl-CoA reductase and cinnamoyl-CoA-reductase-like gene family in land plants. Plant Sci, 2011, 181(3):249-257.
[28] Zhou R, Jackson L, Shadle G, et al. Distinct cinnamoyl CoA reductases involved in parallel routes to lignin in Medicago truncatula. PNAS, 2010, 107(41):17803-17808.
[29] 张岩.白桦BpCCR基因的功能研究和应用力转录组分析.哈尔滨:东北林业大学, 2012. Zhang Y. Functional characterization of a BpCCR gene from Betula platyphylla Suks and transcriptome analysis of reaction wood. Harbin:Northeast Forestry University, 2012.
[30] 秦超.棉花肉桂酰辅酶A还原酶基因(GhCCR4)遗传转化和功能分析.乌鲁木齐:新疆农业大学, 2009. Qin C. Genetic transformation and function analysis of cinnamoyl CoA reductase(GhCCR4) gene in Cotton(Gossypium hitstum).Urumuchi:Xin Jiang Agricultural University, 2009.
[31] Wadenbäck J, Von Arnold S, Egertsdotter U, et al. Lignin biosynthesis in transgenic Norway spruce plants harboring an antisense construct for cinnamoyl CoA reductase (CCR).Transgenic Res, 2008, 17(3):379-392.
[32] Dixon R A, Lamb C J. Molecular communication in interactions between plants and microbial pathogens, Annu Rev Plant Physiol, Plant Mol Biol, 1990, 41:339-367.
[33] Lauvergeat V, Lacomme C, Lacombe E, et al. Two cinnamoyl-CoA reductase (CCR) genes from Arabidopsis thaliana are differentially expressed during development and in response to infection with pathogenic bacteria. Phytochem, 2001, 57:1187-1195.
[34] 陈刚.美洲南瓜CCR基因与种皮发育和抗白粉病相关性研究及其功能分析.兰州:甘肃农业大学, 2013. Chen G. Correlation study of CCR gene in development of seed coat and resistance to powdery mildew and its function analysis in Cucurbita pepo. Lanzhou:Gansu Agricultural University, 2013.
[35] Hyun A S, Eunsook C, Chang W C, et al. Molecular cloning and characterization of soybean cinnamoyl CoA reductase induced by abiotic stresses. Plant Pathol, 2010, 6(4):380-385.
[36] Guo D, Chen F, Inoue K, et al. Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa:impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell, 2001, 13:73-88.
[37] 胡可,严雪锋,栗丹.沉默CCR和CAD基因培育低木质素含量转基因多年生黑麦草.草业学报, 2013, 22(5):72-83. Hu K, Yang X F, Li D. Genetic improvement of perennial ryegrass with low lignin content by silencing genes of CCR and CAD. Acta Prataculturae Sinica, 2013, 22(5):72-83.
[38] Cherney J H, Cherney D J, Akin D, et al. Potential of brown-midrib, low-lignin mutants for improving forage quality. Agron, 1991, 46:157-198.
[39] 郭廷杰.贯彻科学发展观拓展资源再生产业促进生物质能利用.再生资源研究, 2005, 2:1-4. Guo T J. Implement the scientific concept of development to expand the recycling industry to promote the use of biomass. Renewable Resources Research, 2005, 2:1-4.
[40] 常振明,韩平,曲春洪.可再生能源利用现状与未来展望.当代石油化工, 2004, 12(12):19-25. Chang Z M, Han P, Qu C H. Renewable energy utilization status and future prospects. Petroleum & Petrochemtcal Today, 2004, 12(12):19-25.
[41] 翔实.植物燃料的研究现状与发展.科技与经济, 1996, 12:43-45. Xian S. Research status and development of plant fuel. Science &Technology and Economy, 1996, 12:43-45.
[42] 秦向华.能源植物姗姗走来.森林与人类, 2004, 11:49. Qing X H. The coming of energy plant. Forest & Humankind, 2004,11:49.
[43] Bouvier D. Yvoire M, Bouchabke-Coussa O, et al. Disrupting the cinnamyl alcohol dehydrogenase 1 gene (BdCAD1) leads to altered lignification and improved saccharification in Brachypodium distachyon. Plant J, 2013, 73(3):496-508.
[44] Fornal E S, Shi X, Chai C, et al. ZmMYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux. Plant J, 2010, 64(4):633-644.
[45] Saathoff A J, Sarath G, Chow E K, et al. Downregulation of cinnamyl-alcohol dehydrogenase in switchgrass by RNA silencing results in enhanced glucose release after cellulase treatment. PLoS One, 2011, 6(1):e16416.
[46] Chen F, Dixon R A. Lignin modification improves fermentable sugar yields for biofuel production. Nature Biotechnology, 2007, 25(7):759-761.
[47] Van Acker R, Leple J C, Aerts D, et al. Improved saccharification and ethanol yield from field-grown transgenic poplar deficient in cinnamoyl-CoA reductase. Proc Nat Acad Sci, 2014, 111(2):845-850.
[48] 谷振军,张党权,黄青云.木质素合成关键酶基因与造纸植物转基因改良应用研究.中南林业科技大学学报, 2010, 30(3):68-75. Gu Z J, Zhang D Q, Huang Q Y. Transgenic modification on pulp plants by key genes regulating lignin biosynthesis. Central South University of Forestry and Technology, 2010, 30(3):68-75.
[49] Leple J C, Dauwe R, Morreel K, et al. Downregulation of cinnamoyl-coenzyme A reductase in poplar:multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. Plant Cell, 2007, 19(11):3669-3691.

[1] Jun CHEN,Hua-jun ZHENG,Ya-ming LIU,Guo-ping ZHAO,Song QIN. The Analysis of the Low Coverage Haematococcus Pluvialis Draft Genome[J]. China Biotechnology, 2018, 38(7): 21-28.
[2] Shuang-shuang LIU,Suo-wei WU,Li-qun RAO,Xiang-yuan WAN. Molecular Mechanism and Application Analysis of Genic Male Sterility in Maize[J]. China Biotechnology, 2018, 38(1): 100-107.
[3] ZHANG Yan-fang, SUN Rui-fen, GUO Shu-chun, HOU Jian-hua. Cloning and Expression Analysis of V-type Proton ATPase Subunit a3 Gene in Sunflower (Helianthus annuus L.)[J]. China Biotechnology, 2017, 37(5): 19-27.
[4] RAO Jing-jing, JING Yi-xian, ZOU Ming-yue, HU Xiao-lei, LIAO Fei, YANG Xiao-lan. Clone, Expression and Characterization of the Uricase from Meyerozyma guilliermondii[J]. China Biotechnology, 2017, 37(11): 74-82.
[5] HE Shi-bao, YANG Cheng-fei, SHANG Sha, WANG Ling-yan, TANG Wen-chao, ZHU Yong. Cloning and Expression Analysis of Juvenile Hormone Binding Protein Gene Bmtol in Silkworm,Bombyx mori[J]. China Biotechnology, 2017, 37(10): 16-25.
[6] ZHANG Min, TIAN Yin-shuai, HU Xiao-le, XU Ying, CHEN Fang. Cloning and Expression Analysis of JcAGG3, G-protein Gamma Subunitsthree Gene from Jatrophacurcas L.[J]. China Biotechnology, 2016, 36(5): 46-52.
[7] LI Da, DAI Peng, WANG Wei, ZHANG Wen-tao, WANG Qin, SHU Yi, ZHU Chun-lai, JI Qi-feng, LIANG Ping, YAN Zhen. Cloning and Expression of PLCE1 Gene and Its Haplotypes of rs2274223 and rs3765524[J]. China Biotechnology, 2016, 36(12): 1-7.
[8] GAO Fei, ZHOU Jing, LIU Xiao-tong, LI Cheng-lei, YAO Hui-peng, ZHAO Hai-xia, WU Qi . Cloning and Expression Analysis One Zinc Finger Protein Gene FtLOL1 in Fagopyrum tataricum: Effect of Abiotic Stress[J]. China Biotechnology, 2015, 35(8): 44-50.
[9] WANG Shi-qi, LIU Jing-ying, LIU Cheng-lang, LI Chun, HU Xiao-feng, XIA Li-qiu, ZHANG You-ming. Construction and Expression of Prokaryotic Expression Vector of Soluble TNF-related Apoptosis Inducing Ligand and Its Anti-tumor Activity[J]. China Biotechnology, 2015, 35(12): 1-7.
[10] PU Qiang, LUO Jia, SHEN Lin-yuan, LI Qiang, ZHANG Yi, ZHANG Shun-hua, ZHU Li. The Advance and Application of CRISPR/Cas9 Mediated Genome Editing Technique[J]. China Biotechnology, 2015, 35(11): 77-84.
[11] ZHU Bei-lin, ZHOU Jie, WANG Zheng-hua, ZHAO Yun, HUANG Jing, WU Zi-rong. Cloning and Characterization of Bacillus Licheniformis Glutamyl Endopeptidase[J]. China Biotechnology, 2013, 33(3): 105-110.
[12] FENG Yuan-hang, WANG Gang, JI Jing, GUAN Chun-feng, JIN Chao. Cloning and Expression Analysis of LmP5CS Gene from Lycium chinense Miller[J]. China Biotechnology, 2013, 33(1): 33-40.
[13] ZHANG Mei, FU Yuan-hui, HE Jin-sheng, LU Yan-yan, ZHENG Xian-xian. Expression and Purification of Enhanced Green Fluorescent Protein Based on Baculovirus Expression System[J]. China Biotechnology, 2011, 31(5): 99-103.
[14] LIN Jie, MA Lan, ZHANG Shi-yi, GUAN Chang-dong, LI Xuan, LV Qi. Prokaryotic Expression of Human CD24 and Its Polyclonal Antibody Preparation[J]. China Biotechnology, 2011, 31(12): 39-45.
[15] . Expression and Purification of Enhanced Green Fluorescent Protein Based on Baculovirus Expression System[J]. China Biotechnology, 2011, 31(05): 0-0.