Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2015, Vol. 35 Issue (12): 84-88    DOI: 10.13523/j.cb.20151213
    
The Research Progress of Direct Reprogramming for Cardiac Regeneration
HAO Wen1, MIAO Huang-tai1, SHI Shu-tian1, NIE Shao-ping1,2
1. Emergency and Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China;
2. Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
Download: HTML   PDF(423KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Cardiac regeneration is expected to change the existing treatment situation of cardiovascular disease.Research in the field of direct reprogramming provides a new powerful tool to achieve this goal.Direct reprogramming is widely used for studies on cell repair and organ transplantation recent years,which can by pass the middle stage of induced pluripotent stem cells,change one terminallydifferentiated cell type directly into another.The developments of direct reprogramming in the heart repair were summarized, the controversies and obstacles that challenge the field were pointed out, and the applications of this technology in the field of cardiovascular regenerative medicine in the future were explored.



Key wordsCardiomyocytes      Direct reprogramming      Regeneration      Repairation     
Received: 20 July 2015      Published: 22 December 2015
ZTFLH:  R541  
Cite this article:

HAO Wen, MIAO Huang-tai, SHI Shu-tian, NIE Shao-ping. The Research Progress of Direct Reprogramming for Cardiac Regeneration. China Biotechnology, 2015, 35(12): 84-88.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20151213     OR     https://manu60.magtech.com.cn/biotech/Y2015/V35/I12/84

[1] Go A S, Mozaffarian D, Roger V L,et al.Heart disease and stroke statistics-2014 update:a report from the American Heart Association.Circulation, 2014, 129(3):e28-e292.
[2] Dilley R J, Morrison W A.Vascularisation to improve translational potential of tissue engineering systems for cardiac repair.Int J Biochem Cell Biol, 2014, 56:38-46.
[3] Jaenisch R, Young R.Stem cells,the molecular circuitry of pluripotency and nuclear reprogramming.Cell, 2008, 132(4):567-582.
[4] Polo J M, Liu S, Figueroa M E, et al.Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells.Nat Biotechnol, 2010, 28(8):848-855.
[5] Muraoka N, Yamakawa H, Miyamoto K, et al.MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures.EMBO J, 2014, 33(14):1565-1581.
[6] Pfisterer U, Kirkeby A, Torper O, et al.Direct conversion of human fibroblasts to dopaminergic neurons.Proc Natl Acad Sci U S A, 2011, 108(25):10343-10348.
[7] Davis R L, Weintraub H, Lassar A B.Expression of a single transfected cDNA converts fibroblasts to myoblasts.Cell, 1987, 51(6):987-1000.
[8] Blau H M, Pavlath G K, Hardeman E C, et al.Plasticity of the differentiated state.Science, 1985, 230(4727):758-766.
[9] Vierbuchen T, Ostermeier A, Pang Z P, et al.Direct conversion of fibroblasts to functional neurons by defined factors.Nature, 2010, 463(7284):1035-1041.
[10] Kelly M C, Chang Q, Pan A, et al.Atoh1 directs the formation of sensory mosaics and induces cell proliferation in the postnatal mammalian cochlea in vivo.J Neurosci, 2012, 32(19):6699-6710.
[11] Liu Z, Dearman J A, Cox B C, et al.Age-dependent in vivo conversion of mouse cochlear pillar and Deiters' cells to immature hair cells by Atoh1 ectopic expression.J Neurosci, 2012, 32(19):6600-6610.
[12] Buganim Y, Itskovich E, Hu Y C, et al.Direct reprogramming of fibroblasts into embryonic sertoli-like cells by defined factors.Cell Stem Cell, 2012, 11(3):373-386.
[13] Takahashi K, Yamanaka S.Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.Cell, 2006, 126(4):663-676.
[14] Ieda M, Fu J D, Delgado-Olguin P, et al.Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors.Cell, 2010, 142(3):375-386.
[15] Song K, Nam Y J, Luo X, et al.Heart repair by reprogramming non-myocytes with cardiac transcription factors.Nature, 2012, 485(7400):599-604.
[16] Protze S, Khattak S, Poulet C, et al.A new approach to transcription factor screening for reprogramming of fibroblasts to cardiomyocyte-like cells.J Mol Cell Cardiol, 2012, 53(3):323-332.
[17] Chen J X, Krane M, Deutsh M A, et al.Inefficient reprogramming of fibroblasts into cardiomyocytes using Gata4,Mef2c,and Tbx.Circ Res, 2012, 111(1):50-55.
[18] Inagawa K, Ieda M.Direct reprogramming of mouse fibroblasts into cardiac myocytes.J Cardiovasc Transl Res, 2013, 6(1):37-45.
[19] Jayawardena T M, Egemnazarov B, Finch E A, et al.MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes.Circ Res, 2012, 110(11):1465-1473.
[20] Muraoka N, Yamakawa H, Miyamoto K, et al.MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures.EMBO J, 2014, 33(14):1565-1581.
[21] Wang H, Cao N, Spencer C I, et al.Small molecules enable cardiac eprogramming of mouse fibroblasts with a single factor,Oct4.Cell Rep, 2014, 6(5):951-960.
[22] Ifkovits J L, Addis R C, Epstein J A, et al.Inhibition of TGFβ signaling increases direct conversion of fibroblasts to induced cardiomyocytes.PloS One, 2014, 9(2):e89678.
[23] Russell C Addis, Jonathan A Epstein.Induced regeneration-the progress and promise of direct reprogramming for heart repair.Nat Med, 2013, 19(7):829-836.
[24] Qian L, Huang Y, Spencer C I, et al.In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes.Nature, 2012, 485(7400):593-598.
[25] Fu J D, Stone N R, Liu L, et al.Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state.Stem Cell Reports, 2013, 1(3):235-247.
[26] Islas J F, Liu Y, Weng K C, et al.Transcription factors ETS2 and MESP1 transdifferentiate human dermal fibroblasts into cardiac progenitors.Proc Natl Acad Sci USA, 2012, 109(32):13016-13021.
[27] Nam Y J, Song K, Luo X, et al.Reprogramming of human fibroblasts toward a cardiac fate.Proc Natl Acad Sci U S A, 2013, 110(14):5588-5593.
[28] Wada R, Muraoka N, Inagawa K, et al.Induction of human cardiomyocyte-like cells from fibroblasts by defined factors.Proc Natl Acad Sci U S A, 2013, 110(31):12667-12672.
[29] Yamakawa H, Ieda M.Strategies for heart regeneration approaches ranging from induced pluripotent stem cells to direct cardiac reprogramming.Int Heart J, 2015, 56(1):1-5.
[30] Kattman S J, Koonce C H, Walison B J, et al.Stem cells and their derivatives:A renaisance in cardiovaseular translational research.J Cardiovase Tranal Res, 2011, 4(1):66-72.
[31] Xie M, Cao N, Ding S.Small molecules for cell reprogramming and heart repair:Progress and perspective.ACS Chem Biol, 2014, 9(1):34-44.
[32] Nam Y J, Lubczyk C, Bhakta M, et al.Induction of diverse cardiac cell types by reprogramming fibroblasts with cardiac transcription factors.Development, 2014, 141(22):4267-4278.

[1] Hui-rong WU,Zhao-hui WEN. Application of Chitosan in Nerve Tissue Engineering[J]. China Biotechnology, 2019, 39(6): 73-77.
[2] Jian-xiu LI,Xian-rui CHEN,Xiao-ling CHEN,Yan-yan HUANG,Qi-wen MO,Neng-zhong XIE,Ri-bo HUANG. Construct Whole-cell Biocatalyst and Produce (S)-Acetoin via Synthetic Biology Strategy[J]. China Biotechnology, 2019, 39(4): 60-68.
[3] HE Guan-rong,HE Bi-zhu,WU Sha-sha,SHI Jing-shan,CHEN Ji-shuang,LAN Si-ren. Establishment of an Efficient Regeneration System in Goodyera foliosa and Comprehensive Analysis of Functionally Regulated Genes Involved in Developmental Regulatory Pathways Based on Transcriptome Analysis[J]. China Biotechnology, 2018, 38(12): 57-64.
[4] Xu-peng ZHAO,Xiao-peng ZHAO,Hao SHI,Xue-mei CHEN,Ting JIANG,Yan LIU. Establishment of High Frequency Regeneration via Leaf Explants of ‘Guichang’ Kiwifruit (Actinidia chinensis)[J]. China Biotechnology, 2018, 38(10): 48-54.
[5] Ting AN,Jing JI,Yu-rong WANG,Zhi-gang MA,Gang WANG,Qian LI,Dan YANG,Song-hao ZHANG. Analysis of the Transformation Efficiency and Induced Differentiation of Lilium brownii Scales[J]. China Biotechnology, 2018, 38(1): 25-31.
[6] ZHENG Jie, JIANG Chao, LI Xiao-kun, TIAN Hai-shan. The Progression of Fibroblast Growth Factor 6[J]. China Biotechnology, 2017, 37(4): 110-114.
[7] LIU Shan, LI Yuan, ZHU Jun. One-pot Enzymatic Synthesis of L-2-Aminobutyric Acid Coupling with a NADH Regeneration System Based on Ketoreductase[J]. China Biotechnology, 2017, 37(1): 64-70.
[8] ZHU Xue-rui, JI Jing, WANG Gang, MA Zhi-gang, YANG Dan, JIN Chao, LI Chen. Influence on the Conversion Efficiency of Induced Differentiation of Various Potato Tissues[J]. China Biotechnology, 2016, 36(10): 53-59.
[9] JING Le-gang, QIAO Jing, LU Fang, ZHEN Xin, LU Man, AI Yan. Progress in Condition of Mesenchymal Stem Cells Differentiation into Cardiomyocytes[J]. China Biotechnology, 2014, 34(3): 115-124.
[10] LIU Ben, ZHANG Cai-shun, GAO Xu-bin, LI Hua-nan, KONG Xu. Study on the Preparation of Polycaprolactone/chitosan Nerve Conduit Combined with Bone Marrow Mesenchymal Stem Cells to Promote Sciatic Nerve Injury Repair in Rats[J]. China Biotechnology, 2014, 34(2): 34-38.
[11] LI Bing-juan, LI Yu-xia, LI Bei-ping, LING Yan, ZHOU Wei, LIU Gang, ZHANG Jing-hai, YUE Jun-jie, CHEN Hui-peng. Study of the Relationship between the Disordered C Terminusin of Formate Dehydrogenase and the Conversion Rate in the Whole-cell Catalysis of Prochiral Acetone[J]. China Biotechnology, 2013, 33(8): 1-10.
[12] OU Qiao-ming, HOU Yi-qing, BAO Mei-nian, HU Da, CHEN Yu-liang, YUE Chun-ling. The Suspended Single Cell Culture and Embryogeny and Plant Regeneration of Pinellia ternata[J]. China Biotechnology, 2012, 32(10): 39-49.
[13] WU Xiao-yun, WANG Shi-li. Progress on the Plasticity of Muscle-derived Stem Cell[J]. China Biotechnology, 2011, 31(7): 114-120.
[14] LU Song-chong, ZHU Jin-qi, LI Jie, ZHANG Hong-xia. An Efficient Method for Adventitious Shoot Regeneration from Leaf and Stem-segment Explants of Russian Olive Elaeagnus angustifolia L.[J]. China Biotechnology, 2011, 31(04): 113-118.
[15] ZHENG Hui, LI Qiu-Shun, GAO An-Heng, ZHANG Li-Qun, MA Yao-Hong, SHI Jian-Guo. Key Technologies and Progress of Amperometric Biosensors Based on Dehydrogenases[J]. China Biotechnology, 2010, 30(09): 118-123.