Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2015, Vol. 35 Issue (11): 92-98    DOI: 10.13523/j.cb.20151113
    
Advances in Genetic Research Related to the Synthesis of Alternaria alternata Toxins
WANG Hong-xiu, ZHANG Qian, WANG Ling-jie, TANG Ke-zhi
Southwest University/Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing 400712, China
Download: HTML   PDF(578KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Alternaria Nees which can produce at least 9 HST, are one of the most cosmopolitan fungus. According to different hosts, seven of Alternaria Nees are considered distinct pathotypes of Alternaria alternata. Each pathotype produces specific HST, a diverse group of low-molecular-weight secondary metabolites, which is toxic to susceptible cultivars, but not to resistant cultivars. The genes participating in HST biosynthesis are multi-cope genes which constitute gene clusters. These gene clusters are located on a <2.0Mb CD chromosome which determines the pathogenicity of the A.alternate. The inherent instability of the chromosomes does not affect hypha growth or conidium germination, but does affect the disease-causing capacity on host plants. The HST biosynthetic genes have been isolated from six pathotypes of A.alternate. HST produced by the Japanese pear, strawberry and tangerine pathotype have a common structural moiety, EDA, and these three pathotypes share common genes required for EDA biosynthesis. Studies of the molecular genetics of HST production have provided new insights into the evolution of A.alternata pathotypes.



Key wordsAlternaria alternata      HST gene cluster      HST synthesis gene      CD chromosome     
Received: 11 June 2015      Published: 24 November 2015
ZTFLH:  Q78  
Cite this article:

WANG Hong-xiu, ZHANG Qian, WANG Ling-jie, TANG Ke-zhi. Advances in Genetic Research Related to the Synthesis of Alternaria alternata Toxins. China Biotechnology, 2015, 35(11): 92-98.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20151113     OR     https://manu60.magtech.com.cn/biotech/Y2015/V35/I11/92

[1] Tsuge T, Harimoto Y, Akimitsu K, et al. Host-selective toxins produced by the plant pathogenic fungus Alternaria alternata. FEMS Microbiology Reviews, 2013, 37(1): 44-66.
[2] Harimoto Y, Hatta R, Kodama M, et al. Expression profiles of genes encoded by the supernumerary chromosome controlling AM-toxin biosynthesis and pathogenicity in the apple pathotype of Alternaria alternata. Molecular Plant-Microbe Interactions, 2007, 20(4): 1463-1476.
[3] Miyamoto Y, Masunaka A, Tsuge T, et al. Functional analysis of a multi-copy host-selective ACT-toxin biosynthesis gene in the tangerine pathotype of Alternaria alternata using RNA silencing. Molecular Plant-Microbe Interactions, 2008, 21(12): 1591-1599.
[4] Akamatsu H, Taga M, Kodama M, et al. Molecular karyotypes for Alternaria plant pathogens known to produce host-specific toxins. Current Genetics, 1999, 35(6): 647-656.
[5] Johnson L, Johnson R D, Akamatsu H, et al. Spontaneous loss of a conditionally dispensable chromosome from Alternaria alternata apple pathotype leads to loss of toxin production and pathogenicity. Current Genetics, 2001, 40(2): 65-72.
[6] Akimitsu K, Tsuge T, Kodama M, et al. Alternaria host-selective toxins: determinant factors of plant disease. Journal of General Plant Pahtology, 2014, 80(2):109-122.
[7] 康子腾,姜黎明,罗义勇,等. 植物病原链格孢属真菌的致病机制研究进展. 生命科学,2013, 25(9):909-914. Kang Z T, Jiang L M, Luo Y Y, et al. The research advances of mechanism of pathogenicity of Alternaria phytopathogenic fungi. Chinese Bulletin of Life Sciences, 2013, 25(9):909-914.
[8] 赵圆,王玲杰,王雪峰,等. 杂柑褐斑病的病原鉴定.果树学报,2014,31(2) :292-295. Zhao Y, Wang L J, Wang X F, et al. Identification of the pathogenic fungus causing brown spot in two tangerine hybrid varieties. Journal of Fruit Science, 2014, 31(2):292-295.
[9] 王玲杰,王洪秀,赵圆,等.柑橘褐斑病菌毒素研究进展. 中国南方果树,2014, 43(3) :60-63. Wang L J, Wang H X,Zhao Y, et al. The research progress of toxin produced by pathogeny of Citrus Brown Spot. South China Fruits, 2014, 43(3):60-63.
[10] 马振国,董金皋,樊慕贞. 芸薹链格孢致病毒素研究Ⅱ——AB-毒素对白菜叶片细胞PAL、POD、SOD活性的影响. 河北农业大学学报,2002,25(8):60-65. Ma Z G, Dong J G, Fan M Z. Study on toxin of Alternaria brassicae Ⅱ——effect of AB-toxin on PAL, PO, SOD activity in leave cells of Brassica chinensis. Journal of Agricultural University of Hebei, 2002,25(8):60-65.
[11] 万佐玺,强胜,李扬汉. 链格孢菌寄主选择性毒素的研究现状. 湖北民族学院学报(自然科学版),2001,19(4):169-175. Wan Z X, Oiang S, Li Y H. Study on the status guo of Alternaria alternata specific toxins. JournaI of Hubei Institute for NationaIities (Nat Sci), 2001,19(4):169-175.
[12] Rosewich U L, Kistler H C. Role of horizontal gene transfer in the evolution of fungi. Annual Review of Phytopathology, 2000, 38(4): 325-363.
[13] Tanaka A, Shiotani H, Yamamoto M, et al. Insertional mutagenesis and cloning of the genes required for biosynthesis of the host-specific AK-toxin in the Japanese pear pathotype of Alternaria alternata. Molecular Plant-Microbe Interactions, 1999, 12(8): 691-702.
[14] Hatta R, Shinjo A, Ruswandi S, et al. DNA transposon fossils present on the conditionally dispensable chromosome controlling AF-toxin biosynthesis and pathogenicity of Alternaria alternata. Journal of General Plant Pahtology, 2006, 72(5): 210-219.
[15] Hatta R, Ito K, Hosaki Y, et al. A conditionally dispensable chromosome controls host-specific pathogenicity in the fungal plant pathogen Alternaria alternata. Genetics, 2002, 161(4): 59-70.
[16] Ruswandi S R, Kitani K, Akimitsu K, et al. Structural analysis of cosmid clone pcAFT-2 carrying AFT10-1encoding an acyl-CoA dehydrogenase involved in AF-toxin production in the strawberry pathotype of Alternaria alternata. Journal of General Plant Pahtology, 2005, l71(2): 107-116.
[17] Harimoto Y, Tanaka T, Kodama M, et al. Multiple copies of AMT2 are prerequisite for the apple pathotype of Alternaria alternata to produce enough AM-toxin for expressing pathogenicity. Journal of General Plant Pahtology, 2008, 74(3): 222-229.
[18] Masunaka A, Tanaka A, Tsuge T, et al. Distribution and characterization of AKT homologs in the tangerine pathotype of Alternaria alternata. Phytopathology, 2000, 90(3): 762-768.
[19] Akagi Y, Akamatsu H, Otani H, et al. Horizontal chromosome transfer: a mechanism for the evolution and differentiation of a plant pathogenic fungus. Eukaryot Cell, 2009, 8(19): 1732-1738.
[20] Covert S F. Supernumerary chromosomes in filamentous fungi. Current Genetics, 1998, 33(5): 311-319.
[21] Adachi Y, Tsuge T. Coinfection by different isolates of Alternaria alternata in single black spot lesions of Japanese pear leaves. Phytopathology, 1994, 84(12): 447-451.
[22] Akagi Y, Taga M, Yamamoto M, et al. Chromosome constitution of hybrid strains constructed by protoplast fusion between the tomato and strawberry pathotypes of Alternaria alternata. Journal of General Plant Pahtology, 2009, 75(6): 101-109.
[23] Masunaka A, Ohtani K, Peever T L, et al. An isolate of Alternaria alternata that is pathogenic to both tangerines and rough lemon and produces two hostselective toxins, ACT- and ACR-toxins. Phytopathology, 2005, 95(3): 241-247.
[24] Ma L J, Van Der Does H C, Borkovich K A. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature, 2000, 464(7287): 367-373.
[25] Huang S L, Itoh Y, Kohmoto K, et al. Hyphal anastomosis and complementary growth of fused cells in Alternaria alternata. Mycoscience, 1996, 37(11): 1-13.
[26] Stewart J E, Timmer L W, Lawrence C B, et al. Discord between morphological and phylogenetic species boundaries: incomplete lineage sorting and recombination results in fuzzy species boundaries in an asexual fungal pathogen. BMC Evolutionary Biology, 2015, 14(1): 38-46.
[27] Nakatsuka S, Goto T, Itoh Y, et al. Chemical Studies on Structures and Host-specificities of ACT-toxins Produced by Alternaria alternata Tangerine Pathotype Causing Citrus Brown Spot Disease. Nagoya: 31st Symposium on the Chemistry of Natural Products, 1989: 671-676.
[28] Huang F, Fu Y S, Nie D, et al. Identification of a novel phylogenetic lineage of Alternaria alternata causing citrus brown spot in China. Fungal Biology,2015,12(10):320-330.
[29] Tanaka A, Tsuge T. Structural and functional complexity of the genomic region controlling AK-toxin biosynthesis and pathogenicity in the Japanese pear pathotype of Alternaria alternata. Molecular Plant-Microbe Interactions, 2000, 13(8): 975-986.
[30] Takaoka S, Kurata M, Harimoto Y, et al. Complex regulation of secondary metabolism controlling pathogenicity in the phytopathogenic fungus Alternaria alternate. New Phytologist , 2015, 202(4): 1297-1309.
[31] Ajiro N, Miyamoto Y, Masunaka A. Role of the host-selective ACT-toxin synthesis gene ACTTS2 encoding an enoyl-reductase in pathogenicity of the tangerine pathotype of Alternaria alternata. Phytopathology, 2010, 100(12): 120-126.
[32] Miyamoto Y, Isshiki Y, Honda A. Function of genes encoding acyl-CoA synthetase and enoyl-CoA hydratase for host-selective ACT-toxin biosynthesis in the tangerine pathotype of Alternaria alternata. Phytopathology, 2009, 99(4): 369-377.
[33] Miyamoto Y, Masunaka A, Tsuge T. ACTTS3 encoding a polyketide synthase is essential for the biosynthesis of ACT-toxin and pathogenicity in the tangerine pathotype of Alternaria alternata. Molecular Plant-Microbe Interactions, 2010, 23(4): 406-414.
[34] Itoh K, Tanaka T, Hatta R, et al. Dissection of the host range of the fungal plant pathogen Alternaria alternata by modification of secondary metabolism. Molecular Microbiology, 2004, 52(3): 399-411.
[35] Johnson R D, Johnson L, Itoh Y, et al. Cloning and characterization of a cyclic peptide synthetase gene from Alternaria alternata apple pathotype whose product is involved in AM-toxin synthesis and pathogenicity. Molecular Plant-Microbe Interactions, 2000, 13(6): 742-753.
[36] Izumi Y, Ohtani K, Miyamoto Y, et al. A polyketide synthase gene, ACRTS2 , is responsible for biosynthesis of host-selective ACR-toxin in the rough lemon pathotype of Alternaria alternate. Molecular Plant-Microbe Interactions, 2012, 25(11):1419-1429.
[37] Akamatsu H, Otani H, Kodama M. Characterization of a gene cluster for host-specific AAL-toxin biosynthesis in the tomato pathotype of Alternaria alternate. Fungal Genet Newsl, 2003, 50(suppl): 355.
[38] Proctor R H, Desjardins A E, Plattner R D, et al. A polyketide synthase gene required for biosynthesis of fumonisin mycotoxins in Gibberella fujikuroi mating population A. Fungal Genetics and Biology, 1999, 27(2): 100-112.
[39] Seo J A, Proctor R H, Plattner R D. Characterization of four clustered and coregulated genes associated with fumonisin biosynthesis in Fusarium verticillioides. Fungal Genetics and Biology, 2003, 34(2): 155-165.
[40] Yamagishi D, Akamatsu H, Otani H, et al. Pathological evaluation of host-specific AAL-toxins and fumonisin mycotoxins produced by Alternaria and Fusarium species. Journal of General Plant Pahtology, 2006, 72(6): 323-326.
[41] Proctor R H, Brown D W, Plattner R D, et al. Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis. Fungal Genetics and Biology, 2003, 38(5): 237-249.
[42] Waalwijk C, Van Der Lee T, De Vries I, et al. Synteny in toxigenic Fusarium species: the fumonisin gene cluster and the mating type region as examples. European Journal of Plant Pathology, 2004, 110(3): 533-544.
[43] Yakimova E T, Yordanova Z P, Slavov S, et al. Alternaria alternata AT toxin induces programmed cell death in tobacco. Journal of Phytopathology-phytopathologische Zeitschrift, 2009, 157(10):592-601.
[44] Otani H, Kohnobe A, Kodama M, et al. Involvement of Host Factors in the Production of a Protein Host-specific Toxin by Alternaria brassicicola. In: Kohmoto K, Yoder O C. Molecular Genetics of Host-specific Toxin in Plant Disease. Dordrecht: Kluwer Academic Publishers, 1998: 63-69.
[45] Oka K, Akamatsub H, Kodamab M, et al. Host-specific AB toxin production by germinating spores of Alternaria brassicicola is induced by a host-derived oligosaccharide. Physiological and Molecular Plant Pathology, 2015, 66(1):12-19.
No related articles found!