Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2015, Vol. 35 Issue (11): 77-84    DOI: 10.13523/j.cb.20151111
    
The Advance and Application of CRISPR/Cas9 Mediated Genome Editing Technique
PU Qiang1, LUO Jia1, SHEN Lin-yuan1, LI Qiang2, ZHANG Yi3, ZHANG Shun-hua1, ZHU Li1
1. College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
2. Sichuan Province General Station of Animal Husbandry, Chengdu 610041, China;
3. Department of Animal Science, Xichang College, Xichang 615013, China
Download: HTML   PDF(706KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Along with the dramatic advances in sequencing technology, whole genome sequences of more and more species have obtained. Faced with such a status, site-directed genome editing technique has been adapted as an efficient gene-targeting technology to obtain the gene function and application information. CRISPR/Cas9 is the most effective editing technique by far. CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated) refers to an adaptive immune system that is gained from the long-term evolution of the organism which is widespread in bacteria and archaea. The characteristics and development, as well as the application prospect of the technique are summarizzed.



Key wordsGene function      CRISPR/Cas9      Genome editing     
Received: 08 June 2015      Published: 24 November 2015
ZTFLH:  Q789  
Cite this article:

PU Qiang, LUO Jia, SHEN Lin-yuan, LI Qiang, ZHANG Yi, ZHANG Shun-hua, ZHU Li. The Advance and Application of CRISPR/Cas9 Mediated Genome Editing Technique. China Biotechnology, 2015, 35(11): 77-84.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20151111     OR     https://manu60.magtech.com.cn/biotech/Y2015/V35/I11/77

[1] Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 1987, 169(12): 5429-5433.
[2] Wei C, Liu J, Yu Z, et al. TALEN or Cas9-rapid, efficient and specific choices for genome modifications. Journal of Genetics and Genomics, 2013, 40(6): 281-289.
[3] Jansen R, Embden J, Gaastra W, et al. Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology, 2002, 43(6): 1565-1575.
[4] Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology, 2005, 151(3): 653-663.
[5] Bolotin A, Quinquis B, Sorokin A, et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 2005, 151(8): 2551-2561.
[6] Mojica F J, García-Martínez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution, 2005, 60(2): 174-182.
[7] Quiberoni A, Moineau S, Rousseau G M, et al. Streptococcus thermophilus bacteriophages. International Dairy Journal, 2010, 20(10): 657-664.
[8] Horvath P, Romero D A, Coûté-Monvoisin A C, et al. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. Journal of Bacteriology, 2008, 190(4): 1401-1412.
[9] Horvath P, Coûté-Monvoisin A C, Romero D A, et al. Comparative analysis of CRISPR loci in lactic acid bacteria genomes. International Journal of Food Microbiology, 2009, 131(1): 62-70.
[10] Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816-821.
[11] Gasiunas G, Barrangou R, Horvath P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences, 2012, 109(39): E2579-E2586.
[12] Cong L, Ran F A, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819-823.
[13] Mali P, Yang L, Esvelt K M, et al. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121): 823-826.
[14] Sander J D, Joung J K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 2014, 32(4): 347-355.
[15] Karginov F V, Hannon G J. The CRISPR system: small RNA-guided defense in bacteria and archaea. Molecular Cell, 2010, 37(1): 7-19.
[16] Doudna J A, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science, 2014, 346(6213): 1258096.
[17] Westra E R, Swarts D C, Staals R H, et al. The CRISPRs, they are a-changin': how prokaryotes generate adaptive immunity. Annual Review of Genetics, 2012, 46: 311-339.
[18] Jinek M, Jiang F, Taylor D W, et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science, 2014, 343(6176): 1247997.
[19] Deveau H, Barrangou R, Garneau J E, et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. Journal of Bacteriology, 2008, 190(4): 1390-1400.
[20] Nishimasu H, Ran F A, Hsu P D, et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 2014, 156(5): 935-949.
[21] Cho S W, Kim S, Kim J M, et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nature Biotechnology, 2013, 31(3): 230-232.
[22] Sternberg S H, Redding S, Jinek M, et al. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature, 2014, 507(7490): 62-67.
[23] Zhu S, Rong Z, Lu X, et al. Gene targeting via homologous recombination in monkey embryonic stem cells using CRISPR/Cas9 system. Stem Cells and Development, 2015, 4(10):1147-1149.
[24] Bauer D E, Canver M C, Orkin S H. Generation of genomic deletions in mammalian cell Lines via CRISPR/Cas9. Journal of Visualized Experiments, 2015, (95): e52118-e52118.
[25] Osborn M J, Gabriel R, Webber B R, et al. Fanconi anemia gene editing by the CRISPR/Cas9 system. Human Gene Therapy, 2014, 26(2):114-126.
[26] Mandal P K, Ferreira L M, Collins R, et al. Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell, 2014, 15(5): 643-652.
[27] Belhaj K. Editing plant genomes with CRISPR/Cas9. Open Access Overview.[2014-11-29]. http://www.sciencedirect.com/science/article/pii/S0958166914001943.
[28] Fan Z, Li W, Lee SR et al. Efficient gene targeting in golden Syrian hamsters by the CRISPR/Cas9 system. PLoS One, 2014, 9(10): e109755.
[29] Kimura Y. Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering. Open Access Overview.[2014-10-8]. http://www.nature.com/articles/srep06545?WT.ec_id=SREP-631-20141014.
[30] Smith C, Gore A, Yan W, et al. Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell, 2014, 15(1): 12-13.
[31] Fu Y, Foden J A, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology, 2013, 31(9): 822-826.
[32] Ran F A, Hsu P D, Lin C Y, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 2013, 154(6): 1380-1389.
[33] Pattanayak V, Lin S, Guilinger J P, et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nature Biotechnology, 2013, 31(9): 839-843.
[34] Shen B, Zhang W, Zhang J, et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nature Methods, 2014, 11(4): 399-402.
[35] Duan J, Lu G, Xie Z, et al. Genome-wide identification of CRISPR/Cas9 off-targets in human genome. Cell Research, 2014, 24(8): 1009-1012.
[36] Veres A, Gosis B S, Ding Q, et al. Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell, 2014, 15(1): 27-30.
[37] Suzuki K, Yu C, Qu J, et al. Targeted gene correction minimally impacts whole-genome mutational load in human-disease-specific induced pluripotent stem cell clones. Cell Stem Cell, 2014, 15(1): 31-36.
[38] Cradick T J, Fine E J, Antico C J, et al. CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Research, 2013,43(18):1093.
[39] Bell C C, Magor G W, Gillinder K R, et al. A high-throughput screening strategy for detecting CRISPR-Cas9 induced mutations using next-generation sequencing. BMC Genomics, 2014, 15(1): 1002.
[40] Zhang H, Zhang J, Wei P, et al. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnology Journal, 2014, 12(6): 797-807.
[41] Yu C, Liu Y, Ma T, et al. Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell, 2015, 16(2): 142-147.
[42] Crosetto N, Mitra A, Silva M J, et al. Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nature Methods, 2013, 10(4): 361-365.
[43] Tsai S Q, Zheng Z, Nguyen N T, et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nature Biotechnology, 2015,33(2):187-197.
[44] Larson M H, Gilbert L A, Wang X, et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nature Protocols, 2013, 8(11): 2180-2196.
[45] Perez-Pinera P, Kocak D D, Vockley C M, et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nature Methods, 2013, 10(10): 973-976.
[46] Maeder M L, Linder S J, Cascio V M, et al. CRISPR RNA-guided activation of endogenous human genes. Nature Methods, 2013, 10(10): 977-979.
[47] Qi L S, Larson M H, Gilbert L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 2013, 152(5): 1173-1183.
[48] Gilbert L A, Larson M H, Morsut L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 2013, 154(2): 442-451.
[49] Zhou Y, Zhu S, Cai C et al. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature, 2014, 509(7501): 487-491.
[50] Tanenbaum M E, Gilbert L A, Qi L S, et al. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell, 2014, 159(3): 635-646.
[51] Gilbert L A, Horlbeck M A, Adamson B, et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell, 2014, 159(3): 647-661.
[52] Puente XS, Pinyol M, Quesada V, et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature, 2011, 475(7354): 101-105.
[53] Berger M F, Hodis E, Heffernan T P, et al. Melanoma genome sequencing reveals frequent PREX2 mutations. Nature, 2012, 485(7399): 502-506.
[54] Quesada V, Conde L, Villamor N, et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nature Genetics, 2012, 44(1): 47-52.
[55] Savitskaya E, Semenova E, Dedkov V, et al. High-throughput analysis of type IE CRISPR/Cas spacer acquisition in E. coli. RNA Biology, 2013, 10(5): 716-725.
[56] Richter H, Zoephel J, Schermuly J, et al. Characterization of CRISPR RNA processing in Clostridium thermocellum and Methanococcus maripaludis. Nucleic Acids Research, 2012, 40(19): 9887-9896.

[1] WU Xiu-zhi,WANG Hong-jie,ZU Yao. Functional Study of hoxa1a Regulating Craniofacial Bone Development in Zebrafish[J]. China Biotechnology, 2021, 41(9): 20-26.
[2] BI Bo,ZHANG Yu,ZHAO Hui. Application of Yeast Hybrid System in Study of Off-target Rate of CRISPR/Cas9 Gene Editing System[J]. China Biotechnology, 2021, 41(6): 27-37.
[3] WANG Yan-mei,KOU Hang,MA Mei,SHEN Yu-yu,ZHAO Bao-ding,LU Fu-ping,LI Ming. CRISPR/Cas9-mediated Inactivation of the Pectinase Gene in Aspergillus niger and Evaluation of the Mutant Strain[J]. China Biotechnology, 2021, 41(5): 35-44.
[4] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[5] GUO Yang,CHEN Yan-juan,LIU Yi-chen,WANG Hai-jie,WANG Cheng-ji,WANG Jue,WAN Ying-han,ZHOU Yu,XI Jun,SHEN Ru-ling. Pd-1 Gene Knockout Mouse Model Construction and Preliminary Phenotype Verification[J]. China Biotechnology, 2021, 41(10): 1-11.
[6] GUO Yang,WAN Ying-han,WANG Jue,GONG Hui,ZHOU Yu,CI Lei,WAN Zhi-peng,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Toll-like Receptor 4 (TLR4) Gene Knockout Mouse Model Construction and Preliminary Phenotypic Analysis[J]. China Biotechnology, 2020, 40(6): 1-9.
[7] HUANG Sheng, YAN Qi-tao, XIONG Shi-lin, PENG Yi-qi, ZHAO Rui. Construction of CHD5 Gene Overexpressing Lentiviral Vector Based on CRISPR/Cas9-SAM System and the Effect of CHD5 on Proliferation, Migration and Invasion in T24 Cells[J]. China Biotechnology, 2020, 40(3): 1-8.
[8] WANG Wei-dong,DU Jia-ru,ZHANG Yun-shang,FAN Jian-ming. The Application of CRISPR/Cas9 in the Treatment of Human Virus Infection-Related Diseases[J]. China Biotechnology, 2020, 40(12): 18-24.
[9] LEI Hai-ying,ZHAO Qing-song,BAI Feng-lin,SONG Hui-fang,WANG Zhi-jun. Identification of Developing-related Gene ZmCen Using CRISPR/Cas9 in Maize[J]. China Biotechnology, 2020, 40(12): 49-57.
[10] WANG Yue,MU Yan-shuang,LIU Zhong-hua. Progress of CRISPR/Cas Base Editing System[J]. China Biotechnology, 2020, 40(12): 58-66.
[11] WANG Zhi-min,BI Mei-yu,HE Jia-fu,Ren Bing-xu,LIU Dong-jun. Development of CRISPR/Cas9 System and Its Application in Animal Gene Editing[J]. China Biotechnology, 2020, 40(10): 43-50.
[12] Lu JIAN,Ying-hui HUANG,Tian-ya LIANG,Li-min WANG,Hong-tao MA,Ting ZHANG,Dan-yang LI,Ming-lian WANG. Generation of JAK2 Gene Knockout K562 Cell Line by CRISPR/Cas9 System[J]. China Biotechnology, 2019, 39(7): 39-47.
[13] Song-tao ZHOU,Yun CHEN,Xiao-hai GONG,Jian JIN,Hua-zhong LI. Using CRISPR/Cas9 Technology to Construct Human Serum Albumin CHO Stable Expression Cell Line[J]. China Biotechnology, 2019, 39(4): 52-59.
[14] WAN Ying-han,CI Lei,WANG Jue,GONG Hui,LI Jun,DONG Ru,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Construction and Preliminary Phenotypic Verification of PD-L1 Knockout Mice[J]. China Biotechnology, 2019, 39(12): 42-49.
[15] Sai-bao LIU,Ya-fang LI,Hui WANG,Wei WANG,Duo-liang RAN,Hong-yan CHEN,Qing-wen MENG. Construction of Influenza Virus High-producing Cell Line MDCK-Tpl2 -/- with CRISPR / Cas9[J]. China Biotechnology, 2019, 39(1): 46-54.