Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2015, Vol. 35 Issue (11): 1-6    DOI: 10.13523/j.cb.20151101
    
Preparation and Characterization Testing of Bone Morphogenetic Protein2/ Pearl Powder/Chitosan Porous Scaffolds
LI Ting1, SUN Jing2, ZHAO Xiang-zhe1, LIAN Li-qiang1, XIE Fu-qiang1,2
1. School of Stomatology, Lanzhou University, Lanzhou 730000, China;
2. The Second Hospital of Lanzhou University, Lanzhou 730010, China
Download: HTML   PDF(1201KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To prepare the bone morphogenetic protein- 2/pearl powder/chitosan composite scaffolds and observe biological properties. Methods: The bone morphogenetic protein-2/pearl powder/chitosan porous scaffolds were prepared by freeze-drying. The surface properties, the porosity, and the thermal stability of the stent were observed by light microscopy and scanning electron microscopy(SEM), pycnometer, and TGA respectively. Then the rabbit bone marrow mesenchymal stem cells were co-cultured with the stent to detect cell adhesion properties, and inflammatory reaction was observed by burying the stent in subcuticle of rats. Results and conclusion: The results showed that the pore size of bone morphogenetic protein 2/pearl powder/chitosan scaffold ranged between 100μm and 300μm with porosity being 91.64% and compressive stresses up to 3.37MPa. The stent,had suitable cell adhesion properties, and the histocompatibility is predominant, suggesting that the stent may be used as Bone Tissue Engineering materials applied for clinical repairment for bone tissue defects.



Key wordsNacre powder      Biocompatibility      Chitosan      Bone morphogenetic protein 2     
Received: 26 May 2015      Published: 24 November 2015
ZTFLH:  R318  
Cite this article:

LI Ting, SUN Jing, ZHAO Xiang-zhe, LIAN Li-qiang, XIE Fu-qiang. Preparation and Characterization Testing of Bone Morphogenetic Protein2/ Pearl Powder/Chitosan Porous Scaffolds. China Biotechnology, 2015, 35(11): 1-6.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20151101     OR     https://manu60.magtech.com.cn/biotech/Y2015/V35/I11/1

[1] Shahzad S, Yar M, Siddiqi S A, et al. Chitosan-based electrospun nanofibrous mats, hydrogels and cast films: novel anti-bacterial wound dressing matrices. Mater Sci Mater Med,2015,26(3):5462.
[2] Kim H, Lee K, Ko C Y, et al. The role of nacreous factors in preventing osteoporotic bone loss through both osteoblast activation and osteoclast inactivation. Biomaterials, 2012,33(30):7489-7496.
[3] Wang J J, Chen J T, Zhang X R. Nacre-induced osteogenesis in the femoral condyles of New Zealand rabbits. Journal of Southern Medical University, 2009, 29(2): 220-223.
[4] Berland S, Delattre O, Borzeix S, et al. Nacre/bone interface changes in durable nacre endosseous implants in sheep. Biomaterials, 2005, 26(15): 2767-2773.
[5] Lee E U, Lim H C, Hong J Y, et al. Bone regenerative efficacy of biphasic calcium phosphate collagen composite as a carrier of rhBMP-2. .http://www.ncbi.nlm.nih.gov/pubmed/25675639.
[6] 孙晨,祝少博,禹志宏,等. 生物活性玻璃与壳聚糖复合骨修复材料的制备及细胞相容性的研究. 中华实验外科杂志, 2014, 31(2): 368-371. Sun C, Zhu S B, Yu Z H, et al. Preparation and cell compatibility of chitosan composite bioactive glass. Chinese Journal of Experimental Surgery,2014, 31(2): 368-371.
[7] 刘学蔚,侯绪浩,陈怡憓,等. 正交优化白芨多糖复合支架材料的实验研究. 山东大学学报(医学版),2014, 52(3): 40-44. Liu X W, Hou X H, Chen Y H, et al. Experimental study of the bletilla striata glucomanan composited scaffolds by orthogonal experiment. Journal of Shandong University (Health Sciences), 2014, 52(3): 40-44.
[8] 裴国献,魏宽海,金丹. 组织工程学实验技术. 北京:人民军医出版社, 2006:5. Pei G X, Wei K H, Jin D. Tissue Engineering Experimental Techniques. Beijing: People's Medical Publishing House, 2006:5.
[9] 中华人民共和国国家标准.GB/T 1041-2008/ISO 604: 2002:塑料压缩性能的测定. 北京:中国标准出版社,2008. The National Standard of the People's Republic of China, GB/T 1041-2008/ISO 604:2002: Plastic Compression Performance Test. Beijing: China Standard Publishing House, 2008.
[10] 夏静芬,钱国英,陈亮,等. 傅里叶变换红外光谱法对珍珠粉和贝壳粉的研究. 光谱实验室,2010,27(2): 524-527. Xia J F, Qian G Y, Chen L, et al. Study on the differentiation of pearl and conch powders by FTIR. Chinese Journal of Spectroscopy Laboratory, 2010,27(2): 524-527.
[11] Hannink G, Arts J J. Bioresorbability, porosity and mechanical strength of bone substitutes: what is optimal for bone regeneration? Injury, 2011,42(2): 22-25.
[12] 李容林, 李春阳, 张伟. 壳聚糖与I型胶原制备组织工程复合支架材料的扫描电镜研究. 中山大学学报(医学科学版), 2006,9(27): 557-561. Li R L, Li C Y, Zhang W. Micro-structure of composite tissue engineering scaffold of chitosan and typeⅠ collagen with scanning electron microscope. Journal of Sun Yat-Sen University(Medical Sciences), 2006, 9(27): 557-561.
[13] Murphy C M, O'Brien F J. Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adh Migr,2010,4(3):377-381.
[14] Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 2005, 26(27): 5474-5491.
[15] 陈亚保,黄甫,邓陈茂,等. 合浦珠母贝珍珠层粉微量化学成分的研究. 广东海洋大学学报,2007,27(4):93-95. Chen Y B, Huang F, Deng C M, et al. Research pearl oyster pearl powder trace chemical constituents. Journal of Guangdong Ocean University, 2007,27(4): 93-95.
[16] Rousseau M, Boulzaguet H, Biagianti J, et al. Low molecular weight molecules of oyster nacre induce mineralization of the MC3T3-E1 cells. Biomed Mater Res,2008,85(2):487-497.
[17] Shen Y, Zhu J, Zhang H, et al. In vitro osteogenetic activity of pearl.Biomaterials,2006,27(2):281-287.
[18] Green D,Walsh D, Mann S, et al. The potential of biomimesis in bone tissue engineering: lessons from the design and synthesis of invertebrate skeletons. Bone,2002,30(6):810-815.
[19] Ni M, Ratner B D. Nacre surface transformation to hydroxyapatite in a phosphate buffer solution.Biomaterials, 2003,24(23): 4323-4331.
[20] Koutsopoulos S. Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods. Journal of Biomedical Matericals Research, 2002,62(4):600-612.
[21] Moutahir-Belqasmi F, Balmain N, Lieberrher M. Effect of water soluble extract of nacre (Pinctada maxima) on alkaline phosphatase activity and Bcl-2 expression in primary cultured osteoblasts from neonatal rat calvaria. Materials Science: Materials In Medicine, 2001,12(01):1-6.
[22] Deckers M M, van Bezooijen R L, van der Horst G. Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology Journal, 2002,143(04):1545-1553.
[23] Green D W, Kwon H J, Jung H S. Osteogenic potency of nacre on human mesenchymal stem cells. Molecules and Cells,2015,38(3):267-272.
[1] Hui-rong WU,Zhao-hui WEN. Application of Chitosan in Nerve Tissue Engineering[J]. China Biotechnology, 2019, 39(6): 73-77.
[2] Gong CHENG,Si-ming JIAO,Li-shi REN,Cui FENG,Yu-guang DU. Preparation and Composition Analysis of Chitooligosaccharides with Low Degree of Deacetylation by Hydrolysis of Bacillus subtilis Chitosanase[J]. China Biotechnology, 2018, 38(9): 19-26.
[3] Xi KANG,Ai-peng DENG,Shu-lin YANG. Research Progress of Chitosan Based Thermosensitive Hydrogels[J]. China Biotechnology, 2018, 38(5): 79-84.
[4] Si-teng DUAN,Guang-ran LI,Yi-yong MA,Yu-jia QIU,Yu LI,Wei WANG. Study on Physicochemical Properties and Biocompatibility of Injectable Chitosan-hyaluronic Acid Hydrogel Loaded with NGF[J]. China Biotechnology, 2018, 38(4): 70-77.
[5] LI Da-wei, HE Jin, HE Feng-li, LIU Ya-li, DENG Xu-dong, YE Ya-jing, YIN Da-chuan. Advances in Application of Silk Fibroin/Chitosan Composite in Tissue Engineering[J]. China Biotechnology, 2017, 37(10): 111-117.
[6] ZHANG Xiao-min, WANG Shi-yong, LI Gen, ZHAO Hong-bin. The Study of Osteogenic Induction of Type Ⅰ Collagen /Poly(caprolactone)/Attapulgite Composite Scaffold Materials in Vitro[J]. China Biotechnology, 2016, 36(5): 27-33.
[7] SUN Ze-xu, ZHAO Chen, LIAO Jun-yi, WANG Qi, XU Wei, CHEN Cheng, HUANG Wei. Suppression of Runx2 Potentiates BMP2-induced Chondrogenic Differentiation[J]. China Biotechnology, 2016, 36(4): 57-62.
[8] SHEN Peng-fei, WANG Bin, XIE Zi-kang, ZHENG Chong, QU Yu-xing. Effects of Cartilage Oligomeric Matrix Protein Overexpression on BMP-2 Induced Cell Differentiation of Bone Marrow Mesenchymal Stem Cells[J]. China Biotechnology, 2016, 36(10): 1-7.
[9] WANG Hao, WU Li, ZHU Xiao-hua, LIU Wang-wang, YANG Gong-ming. Progress and Prospect of Chitin Deacetylase[J]. China Biotechnology, 2015, 35(1): 96-103.
[10] YUE Chang-wu, LI Yuan-yuan, LV Yu-hong, WANG Miao, SHAO Mei-yun, LIU Ming-hao, HUANG Ying. Isolation, Expression and Identification of Multifunctional Chitosanase from Marine Streptomyces olivaceus FXJ7.023[J]. China Biotechnology, 2014, 34(8): 47-53.
[11] LIU Ben, ZHANG Cai-shun, GAO Xu-bin, LI Hua-nan, KONG Xu. Study on the Preparation of Polycaprolactone/chitosan Nerve Conduit Combined with Bone Marrow Mesenchymal Stem Cells to Promote Sciatic Nerve Injury Repair in Rats[J]. China Biotechnology, 2014, 34(2): 34-38.
[12] BAO Hai-sheng, GAO Xiu-feng, ZHENG Xue-ni, LI Yong-sheng. Preparation and Properties of Chitosan Immobilized Zinc Ion Affinity Chromatography Matrix[J]. China Biotechnology, 2012, 32(05): 85-90.
[13] MA Pan, LIU Hong-tao, XU Qing-song, BAI Xue-fang, DU Yu-guang. Effects of Chitosan Oligosaccharides Attenuating Menadione-induced Injury in Macrophages[J]. China Biotechnology, 2011, 31(06): 18-21.
[14] LI Yan, LONG Zhu, JIANG Hua, LI Hai-Feng, FENG Fei. Preparation and Application of Modified Chitosan Magnetic Particle Flocculant in Treatment for Wastewater of Pulping and Papermaking[J]. China Biotechnology, 2010, 30(06): 65-69.
[15] . Cloning and sequence analysis of chitosanase gene from Bacillus sp. S-1[J]. China Biotechnology, 2009, 29(05): 72-77.