Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2015, Vol. 35 Issue (8): 68-75    DOI: 10.13523/j.cb.20150810
    
The Structural Studies of 6-Hydroxy-3-succinoyl-pyridine Monooxygenase
LI Peng-peng1, YU Hao1,2, XU Ping1, TANG Hong-zhi1
1. State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
2. Collage of Life Science, Qingdao Agriculture University, Qingdao 266109, China
Download: HTML   PDF(1618KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Pyridine derivatives are the important value-added chemicals, and biocatalysis is a potential technology for the industrial synthesis of pyridine derivatives. The structure information of 6-hydroxy-3-succinoyl-pyridine monooxygenase (HspB) by mutant construction was investigated. The space structure of HspB has been built through computer modeling and docked with its substrate HSP(2,5-dihydroxy-pyridine). Then 25 mutations of HspB were constructed and studied, according to molecular simulation, sequence alignment, and homologous crystal references. All the mutants have been expressed and purified, and the kinetic parameters of soluble mutants have been measured. According to the properties of mutants, it can infer that the correct binding of FAD possesses important roles in protein stability, and moreover, substrate HSP, and co-enzyme NADH live in the same activity center in HSP but interact with different amino acids. The structure information will help us for the industrial application of pyridine monooxygenase.



Key wordsHspB      Mutation      Structure information      Kinetic parameter     
Received: 13 March 2015      Published: 25 August 2015
ZTFLH:  Q816  
Cite this article:

LI Peng-peng, YU Hao, XU Ping, TANG Hong-zhi . The Structural Studies of 6-Hydroxy-3-succinoyl-pyridine Monooxygenase. China Biotechnology, 2015, 35(8): 68-75.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20150810     OR     https://manu60.magtech.com.cn/biotech/Y2015/V35/I8/68


[1] Reddy D M, Reddy G. Microbial Degradation of Pyridine and Its Derivatives, in: Microorganisms in Environmental Management. Berlin:Springer, 2012. 249-262.

[2] Bull J A, Mousseau J J, Pelletier G, et al. Synthesis of pyridine and dihydropyridine derivatives by regio-and stereoselective addition to N-activated pyridines. Chemical Reviews, 2012, 112(5): 2642-2713.

[3] Wu X F, Neumann H, Beller M. Synthesis of heterocycles via palladium-catalyzed carbonylations. Chemical Reviews, 2012, 113(1): 1-35.

[4] Liu C, Luo J, Xu L, et al. Synthesis of 2-substituted pyridines from pyridine N-oxides. Arkivoc, 2013(1): 154-174.

[5] Petersen M, Kiener A. Biocatalysis. Green Chemistry, 1999, 1(2): 99-106.

[6] Nakano H, Wieser M, Hurh B, et al. Purification, characterization and gene cloning of 6-hydroxynicotinate 3-monooxygenase from Pseudomonas fluorescens TN5. European Journal of Biochemistry, 1999, 260(1): 120-126.

[7] Jiménez J I, Canales á, Jiménez-Barbero J, et al. Deciphering the genetic determinants for aerobic nicotinic acid degradation: the nic cluster from Pseudomonas putida KT2440. Proceedings of the National Academy of Sciences, 2008, 105(32): 11329-11334.

[8] Treiber N, Schulz G E. Structure of 2, 6-dihydroxypyridine 3-hydroxylase from a nicotine-degrading pathway. Journal of Molecular Biology, 2008, 379(1): 94-104.

[9] Tang H, Yao Y, Zhang D, et al. A novel NADH-dependent and FAD-containing hydroxylase is crucial for nicotine degradation by Pseudomonas putida. Journal of Biological Chemistry, 2011, 286(45): 39179-39187.

[10] Wang S N, Liu Z, Tang H Z, et al. Characterization of environmentally friendly nicotine degradation by Pseudomonas putida biotype A strain S16. Microbiology, 2007, 153(5): 1556-1565.

[11] Yu H, Tang H, Wang L, et al. Complete genome sequence of the nicotine-degrading Pseudomonas putida strain S16. Journal of Bacteriology, 2011, 193(19): 5541-5542.

[12] 胡传明, 于浩, 唐鸿志, 等. 6-羟基-3-琥珀酰吡啶单加氧酶的纯化与结晶条件. 微生物学通报, 2014, 41(9): 1779-1784. Hu C M, Yu H, Tang H Z, et al. Purification and crystallization of 6-hydroxy-3-succinoyl-pyridine monooxygenase. Microbiology China, 2014, 41(9): 1779-1784.

[13] Joosten V,van Berkel W J. Flavoenzymes. Current Opinion in Chemical Biology, 2007, 11 (2):195-202.

[14] Crozier-Reabe K, Moran G R. Form follows function: structural and catalytic variation in the class A flavoprotein monooxygenases. International Journal of Molecular Sciences, 2012, 13(12): 15601-15639.

[15] Beam M P, Bosserman M A, Noinaj N, et al. Crystal structure of Baeyer-Villiger monooxygenase MtmOIV, the key enzyme of the mithramycin biosynthetic pathway. Biochemistry, 2009, 48(21): 4476-4487.

[16] Eppink M H, Bunthof C, Schreuder H A, et al. Phe161 and Arg166 variants of p-hydroxybenzoate hydroxylase: Implications for NADPH recognition and structural stability. FEBS Letters, 1999, 443(3): 251-255.

[17] Koskiniemi H, Mets-Ketel M, Dobritzsch D, et al. Crystal structures of two aromatic hydroxylases involved in the early tailoring steps of angucycline biosynthesis. Journal of Molecular Biology, 2007, 372(3): 633-648.

[18] Goodman D B, Church G M, Kosuri S. Causes and effects of N-terminal codon bias in bacterial genes. Science, 2013, 342(6157): 475-479.

[19] Romero E, Fedkenheuer M, Chocklett S W, et al. Dual role of NADP(H) in the reaction of a flavin dependent N-hydroxylating monooxygenase. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2012, 1824(6): 850-857.

[20] Van Berkel W J, Kamerbeek N M, Fraaije M W. Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. Journal of Biotechnology, 2006, 124(4): 670-689.

[1] GUO Fang,ZHANG Liang,FENG Xu-dong,LI Chun. Plant-derived UDP-glycosyltransferase and Its Molecular Modification[J]. China Biotechnology, 2021, 41(9): 78-91.
[2] GUO Guang-chao,ZHOU Yu-yong,CAO San-jie,WU Yao-min,WU Rui,ZHAO Qin,WEN Xin-tian,HUANG Xiao-bo,WEN Yi-ping. The Study on the Effect of NS2A-C60A Site Mutation of Japanese Encephalitis Virus on Its Biological Characteristics[J]. China Biotechnology, 2020, 40(9): 1-10.
[3] PENG Xiang-lei,WANG Ye,WANG Li-nan,SU Yan-bin,FU Yuan-hui,ZHENG Yan-peng,HE Jin-sheng. Single-Primer PCR for Site-Directed Mutagenesis[J]. China Biotechnology, 2020, 40(8): 19-23.
[4] WANG Qian,CHEN Su-ning. The Genetics of Mixed-phenotype Acute Leukemia[J]. China Biotechnology, 2019, 39(9): 91-97.
[5] YANG Lin,WANG Liu-yue,LI Hui-mei,CHEN Hua-bo. Multi-site Specific Mutagenesis by Multi-fragment Overlap Extension PCR[J]. China Biotechnology, 2019, 39(8): 52-58.
[6] WANG Zhao-guan,WU Yang,QI Hao. Research Progress in Synthetic Diverse Mutant Libraries[J]. China Biotechnology, 2019, 39(11): 113-122.
[7] Ya-nan YANG,Chao SUN,Hao-lin CUI,Xin ZHAO. Effect of Mutation of M145F / F146M on the Photocycle of Photoreceptors Bacteriorhodopsin and Archaerhodopsin 4[J]. China Biotechnology, 2019, 39(1): 21-30.
[8] Hong-yuan CHEN,Hong-yan CHEN,Chun QIAO,Jian-yong LI,Da-ru LU. The Establishment of a Novel Detection System for MYD88 L265P in Waldenström’s Macroglobulinemia[J]. China Biotechnology, 2018, 38(9): 35-40.
[9] Xiao-yong ZHANG,Qian-cheng LUO. Establishment and Clinical Application of LNA-PCR Assay Detecting Hepatitis B Virus Adefovir Dipivoxil Resistance[J]. China Biotechnology, 2018, 38(9): 48-54.
[10] Fang CHEN,Gang XU,Li-rong YANG,Jian-ping WU. Enhancing the Activity of LkTADH by Site-Directed Mutagenesis to Prepare Key Chiral Block of Statins[J]. China Biotechnology, 2018, 38(9): 59-64.
[11] Pan-pan ZHANG,Yan-ji XU,Zhi-ke WANG,Xiao LIU,Su-xia LI. High-level Expression and Characterization of Recombinant Porcine Trypsin and Its R122 Site Mutant in Pichia pastoris[J]. China Biotechnology, 2018, 38(5): 56-65.
[12] Zhi-qiang ZHAO,Tamekou Stephen LACMATA,Mo XIAN,Xiu-tao LIU,Xin-jun FENG,Guang ZHAO. Biosynthesis of Poly (3-hydroxypropionate-co-lactate) from Glycerol by Engineered Escherichia coli[J]. China Biotechnology, 2018, 38(2): 46-53.
[13] WANG Juan, GAO Yu-jiao, SUN Chao, ZHAO Xin. Effect of D97N Mutation on Proton Transport and Energy Conversion in the Photoreceptor Archaerhodopsin 4[J]. China Biotechnology, 2017, 37(9): 23-30.
[14] LUO Feng-xue, LI Fo-sheng, YAO Min, XU Ying. The Cloning and Transient Expression Analysis of Promoter of OsHAK26 from Oryza sativa[J]. China Biotechnology, 2017, 37(2): 33-39.
[15] Xi WANG,Guang-de ZHANG,Xi-ming CHEN,Tong-liang PU. Heterologous Expression, Mutation, Optimizing the Expression Condition and Characterization of Lysostaphin in Kluyveromyces lactis[J]. China Biotechnology, 2017, 37(12): 49-58.