Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2015, Vol. 35 Issue (3): 49-55    DOI: 10.13523/j.cb.20150307
    
Cloning, Expressing of the prpC2 Gene Encoding Citrate Synthase from Corynebacterium crenatum and Its Effect on L-arginine Synthesis
FANG Zhan1, XU Mei-juan1, RAO Zhi-ming1, MAN Zai-wei1, XU Zheng-hong2, GENG Yan2, LU Mao-lin3
1. The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China;
2. School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China;
3. Jiangsu Institute of Microbiology Corporation Limited, Wuxi 214063, China
Download: HTML   PDF(571KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Corynebacterium crenatum SYPA5-5 is an L-arginine high-producing industrial strain of mutation breeding. The role of citrate synthase in L-arginine biosynthesis was investigated by overexpressing the citrate synthase (prpC2) gene in C. crenatum SYPA5-5. The resultant 5.37-fold increase in intracellular citrate synthase activity was achieved in the prpC2-overexpressing strain C. crenatum SYPA5-5/pDXW-10-prpC2 . The recombinant strain enhanced the L-arginine yield to 44.7g/L by about 23.1% in 5L fermenter, as compared to the control, with affecting glucose depletion rate slightly. While the L-arginine yield increased in the prpC2-overexpressing strain, the L-lysine yield, the most primary by-product formation during L-arginine fermentation, decreased to 1.21g/L from the original concentration 5.96g/L, correlating with an increase in the tricarboxylic acid cycle (TCA) intermediates (citrate and isocitrate) and an increase in the activity of citrate synthase.



Key wordsL-arginine      Corynebacterium crenatum      Citrate synthase      Fermentation     
Received: 31 December 2014      Published: 25 March 2015
ZTFLH:  Q78  
Cite this article:

FANG Zhan, XU Mei-juan, RAO Zhi-ming, MAN Zai-wei, XU Zheng-hong, GENG Yan, LU Mao-lin. Cloning, Expressing of the prpC2 Gene Encoding Citrate Synthase from Corynebacterium crenatum and Its Effect on L-arginine Synthesis. China Biotechnology, 2015, 35(3): 49-55.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20150307     OR     https://manu60.magtech.com.cn/biotech/Y2015/V35/I3/49


[1] Lu C D. Pathways and regulation of bacterial arginine metabolism and perspectives for obtaining arginine overproducing strains. Appl Microbiol Biotechnol, 2006, 70 (3):261-272.

[2] Utagawa T. Production of arginine by fermentation. J Nutr, 2004, 134(10 suppl):2854-2867.

[3] Xu M, Rao Z, Xu H, et al. Enhanced production of L-arginine by expression of vitreoscilla hemoglobin using a novel expression system in Corynebacterium crenatum. Appl Biochem Biotechnol, 2011, 163 (6):707-719.

[4] 卢妍, 饶志明, 徐美娟, 等. 钝齿棒杆菌丙酮酸激酶的克隆表达及其对精氨酸合成的扰动影响. 中国生物工程杂志, 2014, 34 (3):48-55. Lu Y, Rao Z M, Xu M J, et al. Cloning, expression of the pyruvate kinase gene from Corynebacterium crenatum and its effect on L-arginine synthesis. China Biotechnology, 2014, 34 (3):48-55.

[5] 刘飞. 钝齿棒杆菌N-乙酰谷氨酸激酶编码基因argB的克隆表达研究. 无锡:江南大学,生物工程学院, 2008. Liu F. Cloning and expression of N-acetylglutamate kinase gene from Corynebacterium crenatum. Wuxi:Jiangnan University School of Biotechnology, 2008.

[6] 饶志明, 徐美娟, 陆元修, 等. 钝齿棒杆菌精氨酸琥珀酸酶编码基因argH的克隆表达及其重组菌发酵产精氨酸研究. 中国生物工程杂志, 2010, 30 (9):49-55. Rao Z M, Xu M J, Lu Y X, et al. Clong, expression and analysis of the argH gene encoding argininosuccinate lyase from Corynebacterium crenatum. China Biotechnology, 2010, 30 (9):49-55.

[7] 徐美娟, 张显, 饶志明, 等. 钝齿棒杆菌N-乙酰鸟氨酸转氨酶的克隆表达分析及其重组菌的精氨酸发酵. 生物工程学报, 2011, 27 (7):1013-1023. Xu M J, Zhang X, Rao Z M, et al. Cloning, expression and characterization of N-Acetylornithine aminotransferase from Corynebacterium crenatum and its effects on L-arginine fermentation. Chinese Journal of Biotechnology, 2011, 27 (7):1013-1023.

[8] Xu M J, Rao Z M, Yang J, et a1. Heterologous and homologous expression of the arginine biosynthetic argC~H cluster from Corynebacterium crenatum for improvement of L-arginine production. J Ind Microbiol Biotechnol, 2012, 39 (3):495-502.

[9] Xu M J, Rao Z M, Dou W F, et a1. Site-directed mutagenesis and feedback-resistant N-acetyl-L-glutamate kinase (NAGK) increase Corynebacterium crenatum L-arginine production. Amino Acids, 2012, 43 (1):255-266.

[10] Becker J, Klopprogge C, Schroder H, et al. Metabolic engineering of the tricarboxylic acid cycle for improved lysine production by Corynebacterium glutamicum. Appl Environ Microbiol, 2009, 75 (24):7866-7869.

[11] Marx A, Striegel K, de Graaf A A, et al. Response of the central metabolism of Corynebacterium glutamicum to different flux burdens. Biotechnol Bioeng, 1997, 56 (2):168-180.

[12] Wiegand G, Remington S J. Citrate synthase: structure, control, and mechanism. Annu Rev Biophys Biophys Chem, 1986, 15:97-117.

[13] Radmacher E, Eggeling L. The three tricarboxylate synthase activities of Corynebacterium glutamicum and increase of L-lysine synthesis. Appl Microbiol Biotechnol, 2007, 76 (3):587-595.

[14] Buch A D, Archana G, Kumar G N. Enhanced citric acid biosynthesis in Pseudomonas fluorescens ATCC 13525 by overexpression of the Escherichia coli citrate synthase gene. Microbiol, 2009, 155(8):2620-2629.

[15] Wittmann C, Heinzle E. Genealogy profiling through strain improvement by using metabolic network analysis: metabolic flux genealogy of several generations of Lysine-producing corynebacteria. Appl Environ Microbiol, 2002, 68 (12):5843-5859.

[16] Tosaka O, Yoshihara Y, Ikeda S, et al. Production of L-lysine by fluoropyruvate-sensitive mutants of Brevibacterium lactofermentum. Agric BioL Chem, 1985, 49 (5):1305-1312

[17] Chen N, Du J, Liu H, et al. Elementary mode analysis and metabolic flux analysis of L-glutamate biosynthesis by Corynebacterium glutamicum. Ann Microbiol, 2009, 59 (2):317-322.

[18] Kirchner O, Tauch A. Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum. J Biotechnol, 2003, 104 (1/3):287-299.

[19] Yin L, Hu X, Xu D, et al. Co-expression of feedback-resistant threonine dehydratase and acetohydroxy acid synthase increase L-isoleucine production in Corynebacterium glutamicum. Metab Eng, 2012, 14 (5):542-550.

[20] 王镜岩, 沈同. 生物化学. 第三版. 北京: 高等教育出版社, 2001:78-278. Wang J Y, Shen T. Biochemistry. 3ed. Beijing: High Education Press, 2001:78-278.

[21] 徐美娟. 钝齿棒杆菌SYPA5-5发酵产L-精氨酸的代谢工程改造. 无锡: 江南大学, 生物工程学院, 2012. Xu M J. Metabolic engineering of Corynebacterium crenatum SYPA5-5 for the L-arginine production. Wuxi: Jiangnan University, College of Bioteehnology, 2012.

[22] Ohnishi J, Hayashi M, Mitsuhashi S, et al. Efficient 40℃ fermentation of L-lysine by a new Corynebacterium glutamicum mutant developed by genome breeding. Appl Microbiol Biotechnol, 2003, 62 (1):69-75.

[23] Radmacher E, Eggeling L. The three tricarboxylate synthase activities of Corynebacterium glutamicum and increase of L-lysine synthesis. Appl Microbiol Biotechnol, 2007, 76 (3):587-595.

[24] Shiio I, Ozaki H, Ujigawa-Takeda K. Production of aspartic acid and lysine by citrate synthase mutants of Brevibacterium flavum. Agric Biol Chem, 1982, 46 (1):101-107.

[25] Marx A, Striegel K, de Graaf AA, et al. Response of the central metabolism of Corynebacterium glutamicum to different flux burdens. Biotechnol Bioeng, 1997, 56 (2):168-180.

[1] GAO Yin-ling,ZHANG Feng-jiao,ZHAO Gui-zhong,ZHANG Hong-sen,WANG Feng-qin,SONG An-dong. Research Progress of Itaconic Acid Fermentation[J]. China Biotechnology, 2021, 41(5): 105-113.
[2] YANG Na,WU Qun,XU Yan. Fermentation Optimization for the Production of Surfactin by Bacillus amyloliquefaciens[J]. China Biotechnology, 2020, 40(7): 51-58.
[3] WANG Meng,ZHANG Quan,GAO Hui-peng,GUAN Hao,CAO Chang-hai. Research Progress on the Biological Fermentation of Xylitol[J]. China Biotechnology, 2020, 40(3): 144-153.
[4] WANG Bao-shi,TAN Feng-ling,LI Lin-bo,LI Zhi-gang,MENG Li,QIU Li-you,ZHANG Ming-xia. Biological Treatment Strategy Improves the Bio-accessibility of Bran Phenols[J]. China Biotechnology, 2020, 40(12): 88-94.
[5] Qiang-qiang PENG,Qi LIU,Ming-qiang XU,Yuan-xing ZHANG,Meng-hao CAI. Heterologous Expression of Insulin Precursor in A Newly Engineered Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 48-55.
[6] Xin-miao WANG,Kang ZHANG,Sheng CHEN,Jing WU. Recombinant Expression and Fermentation Optimization of Dictyoglomus thermophilum Cellobiose 2-Epimerase in Bacillus subtilis[J]. China Biotechnology, 2019, 39(7): 24-31.
[7] CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong. Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria[J]. China Biotechnology, 2019, 39(10): 58-66.
[8] REN Li-qiong,WU Jing,CHEN Sheng. Co-Expression of N-Acetyltransferase Enhances the Expression of Aspergillus nidulans α-Glucosidase in Pichia pastoris[J]. China Biotechnology, 2019, 39(10): 75-81.
[9] Yan HUANG,Yi-rong SUN,Jing WU,Ling-qia SU. Optimization of High Density Fermentation of Recombinant Humicola insolens Cutinase[J]. China Biotechnology, 2019, 39(1): 63-70.
[10] Jun-jie ZHAO,Long ZHANG,Liang WANG,Xu-sheng CHEN,Zhong-gui MAO. Breeding and Physiological Characteristics of ε-Polylysine High-Producing Strain with Double Antibiotic Resistance[J]. China Biotechnology, 2018, 38(8): 59-68.
[11] Fan SUN,Ling-qia SU,Kang ZHANG,Jing WU. D-psicose 3-epimerase Gene Overexpression in Bacillus subtilis and Immobilization of Cells[J]. China Biotechnology, 2018, 38(7): 83-88.
[12] Ya-chao FAN,Lin ZHANG,Xiao-shu LI,Peng-xiang WANG,Xin-wu YAO,Kai QIAO. Study on the Fermentation of 2,3-Butanediol by Klebsiella pneumoniae CICC10011[J]. China Biotechnology, 2018, 38(2): 68-74.
[13] Li-na CHENG,Hai-yan LU,Shu-ling QU,Yi-qun ZHANG,Juan-juan DING,Shao-lan ZOU. Production of Cyclic Adenosine Monophosphate (cAMP) by Microbial Fermentation——A Review[J]. China Biotechnology, 2018, 38(2): 102-108.
[14] ZHANG Ling,WANG Nan,JIN Lv-hua,LIN Rong,YANG Hai-lin. To Promote the Expression of Leucine Dehydrogenase in Bacillus subtilis via Dual-Promoter and Fermentation Research[J]. China Biotechnology, 2018, 38(12): 21-31.
[15] LIU Cui-cui, HU Meng-die, WANG Zhi, DAI Jun, YAO Juan, LI Pei, LI Zhi-jun, CHEN Xiong, LI Xin. Metabolic Characteristics of Intracellular Trehalose Accumulation in Zygosaccharomyces rouxii[J]. China Biotechnology, 2017, 37(9): 41-47.