Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2015, Vol. 35 Issue (3): 25-34    DOI: 10.13523/j.cb.20150304
    
Regulation on L-phenylalanine Fermentation by Escherichia coli and Its Metabolic Flux Analysis
YUAN Pei-pei, CAO Wei-jia, WANG Zhen, ZHANG Bo-wen, CHEN Ke-quan, LI Yan, OUYANG Ping-kai
College of Life Science and Pharmacy, Nanjing Technology University, Nanjing 210009, China
Download: HTML   PDF(903KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The effect of adding intermediate metabolites, thiamine, magnesium on cell growth and L-phenylalanine production were investigated. The yield of L-phenylalanine (L-phe) improved when 1g/L sodium citrate, 1g/L α-ketoglutarate, 150mg/L thiamine or 3g/L magnesium was added. According to the metabolic network of E.coli YP1617, the reason was acquired by metabolic flux analysis. The addition of them can adjust the metabolic flux distribution of G6Pand PEPnode, which provide erythrose-4-phosphate (E4P), phosphoenolpyruvate (PEP) and NADPH for L-Phe production. In the optimal fed-batch fermentation, glucose consumption, cell and L-Phe concentrations, the yield of L-Phe was 24.49%, 23.50%, 62.87% and 30.88% higher than the control, respectively. Moreover, acetate production decreased 56.51%.



Key wordsIntermediate metabolites      Thiamine Magnesium      L-phe      Metabolic flux analysis     
Received: 05 January 2015      Published: 25 March 2015
ZTFLH:  Q-331  
Cite this article:

YUAN Pei-pei, CAO Wei-jia, WANG Zhen, ZHANG Bo-wen, CHEN Ke-quan, LI Yan, OUYANG Ping-kai. Regulation on L-phenylalanine Fermentation by Escherichia coli and Its Metabolic Flux Analysis. China Biotechnology, 2015, 35(3): 25-34.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20150304     OR     https://manu60.magtech.com.cn/biotech/Y2015/V35/I3/25


[1] Johannes B, Marco K, Ulrike M, et al. Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab Eng, 2001, 3(4): 289-300.

[2] Park S H, Hong K T, You S J, et al. L-phenylalanine production by auxotrophic regulatory mutants of Escherichia coli—L-phenylalanine production by mutants of E.coli. Korean J Chem Eng, 1984, 1(1): 65-69.

[3] Hwang S O, Gil G H, Cho Y J, et al. The fermentation process for L-phenylalanine production using an auxotrophic regulatory mutant of Escherichia coli. Appl Microbiol Biotechnol, 1985, 22(2):108-113.

[4] 周海岩. L-苯丙氨酸生产菌株的构建、代谢调控和发酵条件优化. 无锡: 江南大学,生物工程学院, 2011. Zhou H Y. Strain Construction, Metabolic Regulation and Process Optimization for L-Phenylalanine Production.Wuxi: Jiangnan University, College of Biological Engineering, 2011.

[5] Wu Y Q, Jiang P H, Fan C S, et al. Co-expression of five genes in E.coli for L-phenylalanine in Brevibacterium flavum. World J Gastroenterol, 2003, 9(2): 342-346.

[6] Mutsumi T, Yoshinori N, Gyuseop O, et al. Control of L-phenylalanine production by dual feeding of glucose and L-tyrosine. Biotechnol Bioeng, 1996, 52(6): 653-660.

[7] Yakandawala N, Romeo T, Friesen A D, et al. Metabolic engineering of Escherichia coli to enhance phenylalanine production. Appl Microbiol Biotechnol, 2008, 78(2): 283-291.

[8] 姜岷, 黄秀梅, 李建, 等. 氧化还原电位调控对产琥珀酸放线杆菌代谢通量分布的影响. 化工学报, 2009, 60(10): 2555-2561. Jiang M, Huang X M, Li J, et al. Effect of redox potential regulation on metabolic flux distribution of succinate production by Actinobacillus succinogenes. J Chem Ind Eng, 2009, 60(10): 2555-2561.

[9] 潘军华, 潘中明, 曾嵋涓, 等. 营养因子对乳酸发酵短杆菌合成赖氨酸的影响. 无锡轻工大学学报, 2002, 21(2): 130-134. Pan J H, Pan Z M, Zeng M J, et al. Effects of nutrition factors on the biosynthesis of lysine in a lysine producer Brevibacterium lactofermentum FP094. J Wuxi Univ Light Ind, 2002, 21(2): 130-134.

[10] Underwood S A, Buszko M L, Shanmugam K T, et al. Flux through citrate synthase limits the growth of ethanologenic Escherichia coli KO11 during xylose fermentation. Appl Environ Microbiol, 2002, 68(3): 1071-1081.

[11] Akshay G, Jinwoon L, Michael M D, et al. Metabolic fluxes, pools, and enzyme measurements suggest a tighter coupling of energetics and biosynthetic reactions associated with reduced pyruvate kinase flux. Biotechnol Bioeng, 1999, 64(2): 129-134.

[12] Bruce E Waygood, Sanwa B D. The control of pyruvate kinases of Escherichia coli. J Biol Chem, 1974, 249(1): 265-274.

[13] Sanwal B D. Regulatory mechanisms involving nicotinamide adenine nucleotides as allosteric effectors. J Biol Chem, 1970, 254(7): 1626-1631.

[14] 黄秀梅, 姜岷, 李建, 等. 外源添加代谢中间体对产L-琥珀酸放线杆菌厌氧发酵制备丁二酸的影响. 生物工程学报, 2010, 26(9): 1249-1256. Huang X M, Jiang M, Li J, et al. Effect of adding intermediate metabolites on succinate production by A.succinogenes. Chin J Biotech, 2010, 26(9): 1249-1256.

[15] Maciek R A, David F K, Lisa A L, et al. Metabolic flux analysis in a nonstationary system: Fed-batch fermentation of a high yielding strain of E.coli producing 1,3-propanediol. Metab Eng, 2007, 9(3): 277-292.

[16] Jens K, Christoph W, Hartwig S, et al. Metabolic pathway analysis for rational design of L-methionine production by E.coli and C.glutamicum. Metab Eng, 2006, 8(4): 353-369.

[17] 陈飞, 冯小海, 吴波, 等. 丙酸杆菌的两种固定化细胞反应器发酵生产丙酸及其代谢通量分析. 化工学报, 2011, 62(4):1034-1041. Chen F, Feng X H, Wu B, et al. Metabolic flux analysis of proponic acid biosysbthesis with two immobilized cell reactor fermentation by Propionibacterium. J Chem Ind Eng, 2011, 62(4):1034-1041.

[18] 陈宁, 刘辉. 柠檬酸钠对L-亮氨酸发酵代谢流分布的影响. 高校化学工程学报, 2008, 22(3): 478-483. Chen N, Liu H. Effects of sodium citrate on metabolic flux distributions of L-Leucine production by Brevibacterium flavumTK0303. J Chem Eng Chin Uni, 2008, 22(3): 478-483.

[19] Muhammad Akram. Citric acid cycle and role of its intermediates in metabolism. Cell Biochem Biophys, 2014, 68(3): 475-478.

[20] Ren L J, Huang H, Xiao A H, et al. Enhanced docosahexaenoic acid production by reinforcing acetyl-CoA and NADPH supply in Schizochytrium sp.HX-308. Bioprocess Biosyst Eng, 2009, 32(6): 837-843.

[21] Yoichiro S, Eric M P, James K, et al. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab Eng, 2007, 9(2): 160-168.

[22] Guo H W, Catherine M, Du G C, et al. Effects of pyruvate dehydrogenase subunits overexpression on the α-ketoglutarate production in Yarrowia lipolyticaWSH-Z06. Appl Microbiol Biotechnol, 2014, 98(16): 7003-7012.

[23] Waseem R, Yang X M, Wu H S, et al. Evaluation of metal ions (Zn2+,Fe3+and Mg2+) effect on the production of fusaricidin-type antifungal compounds by Paenibacillus polymyxa SQR-21.Bioresour Technol, 2010,101(2):9264-9271.

[24] Jia Y L, Zhong J J. Enhanced production of ansamitocin P-3 by addition of Mg2+ in fermentation of Actinosynnema pretiosum. Bioresour Technol, 2011, 102(2): 10147-10150.

[25] Liu B F, Ren N Q, Ding J, et al. The effect of Ni2+, Fe2+ and Mg2+ concentration on photo-hydrogen production by Rhodopseudomonas faecalis RLD-53. Int J hydrogen Energ, 2009, 34: 721-726.

[1] WANG Ze-jian,LI Bo,WANG Ping,ZHANG Qin,HANG Hai-feng,LIANG Jian-guang,ZHUANG Ying-ping. Effects of Glucose and Maltose Substrates on the Intracellular Metabolic Flux Distribution of Curdlan Polysaccharides Biosynthesis by Alcaligenes faecalis[J]. China Biotechnology, 2020, 40(5): 30-39.
[2] SHI Hui-lin, WANG Ze-jian, WU Jie-qun, GUO Mei-jin, CHU Ju, ZHUANG Ying-ping. Expression of Vitreosicilla Hemoglobin Gene(vgb) In Pseudomonas denitrificans and the Central Carbon Metabolic Flux Analysis on Vitamin B12 Production[J]. China Biotechnology, 2016, 36(9): 21-30.
[3] LI Xiao-jing, DUAN Yun-xia. Application of Metabolic Engineering in Riboflavin Production[J]. China Biotechnology, 2011, 31(02): 130-138.
[4] . Screening and Metabolic Flux Analysis of Glutathione-high-yielding strain from Saccharomyces cerevisiae[J]. China Biotechnology, 2008, 28(7): 110-115.