Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2015, Vol. 35 Issue (2): 99-104    DOI: 10.13523/j.cb.20150215
    
The Research Progress of Alkaloids in Solanaceous Crops
WANG Cui-cui, XU Hui-jin-lan, FU Da-qi
College of Food Science and Nutrition Engineering, China Agriculture University, Beijing 100083, China
Download: HTML   PDF(624KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Steroidal alkaloids(SA) is a kind of secondary metabolites in Solanaceous crops,its complicated structure determines the diversity of the biological activity,and its synthetic route is complicated.Based on the chemical structure of alkaloids compounts, the SA's physical and chemical properties,content distribution,physical activity and synthesis pathway related molecular biology research were mainly discussed.Finally, the development direction of the steroidal alkaloids in the future was analyzed, in order to help investigating the SA biosynthetic pathway,toxicity mechanism, and pharmacology function.



Key wordsSolanum      Steroidal alkaloids      Gene      Biosynthetic pathway     
Received: 11 December 2014      Published: 25 February 2015
ZTFLH:  Q74  
Cite this article:

WANG Cui-cui, XU Hui-jin-lan, FU Da-qi. The Research Progress of Alkaloids in Solanaceous Crops. China Biotechnology, 2015, 35(2): 99-104.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20150215     OR     https://manu60.magtech.com.cn/biotech/Y2015/V35/I2/99


[1] 南京大学化学系有机化学教研室. 有机化学. 北京:高等教育出版社, 1988. 329. Organic chemistry teaching and reseach section in Nanjing university. Organic Chemistry.Beijing: Higher Education Press. 1988.329.

[2] Bowles D. A multigene family of glycosyltransferases in a model plant, Arabidopsis thaliana. Biochem Soc Trans, 2002, 30(2): 301-306.

[3] Friedman M. Tomato glycoalkaloids: role in the plant and in the diet. J Agric Food Chem, 2002, 50(21): 5751-5780.

[4] Arnqvist L, Dutta P C, Jonsson L, et al. Reduction of cholesterol and glycoalkaloid levels in transgenic potato plants by overexpression of a type 1 sterol methyltransferase cDNA. Plant Physiol, 2003, 131(4): 1792-1799.

[5] Kalinowska M, Zimowski J, Paczkowski C. The formation of sugar chains in triterpenoid saponinsand glycoalkaloids. Phytochem, 2005,4: 237-257.

[6] Bowles D, Lim E K, Poppenberger B, et al. Glycosyltransferases of lipophilic small molecules. Annu Rev Plant Biol, 2006, 57: 567-597.

[7] Friedman M. Potato glycoalkaloids and metabolites: roles in the plant and in the diet. J Agric Food Chem, 2006, 54(23): 8655-8681.

[8] Kozukue N, Yoon K S, Byun G I, et al. Distribution of glycoalkaloids in potato tubers of 59 accessions of two wild and five cultivated Solanum species. J Agric Food Chem, 2008, 56(24): 11920-11928.

[9] Mennella G, Rotino G L, Fibiani M, et al. Characterization of health-related compounds in eggplant (Solanum melongena L.) lines derived from introgression of allied species. J Agric Food Chem, 2010, 58(13): 7597-7603.

[10] Blankemeyer J T, Mcwilliams M L, Rayburn J R, et al. Developmental toxicology of solamargine and solasonine glycoalkaloids in frog embryos. Food Chem Toxicol, 1998, 36(5): 383-389.

[11] Blankemeyer J T, White J B, Stringer B K, et al. Effect of alphatomatine and tomatidine on membrane potential of frog embryos and active transport of ions in frog skin. Food Chem Toxicol, 1997,35(10):639-646.

[12] Friedman M, Levin C E, Lee S U, et al. Tomatine-containing green tomato extracts inhibit growth of human breast, colon, liver, and stomach cancer cells. J Agric Food Chem, 2009, 57(13): 5727-5733.

[13] Ikeda T, Ando J, Miyazono A, et al. Anti-herpes virus activity of Solanum steroidal glycosides. Biol Pharm Bull, 2000, 23(3): 363-364.

[14] Milner S E, Brunton N P, Jones P W, et al. Bioactivities of glycoalkaloids and their aglycones from Solanum species. J Agric Food Chem, 2011, 59:3454-3484.

[15] Mckee R K. Factors affecting the toxicity of solanine and related alkaloids to Fusarium caeruleum. J Gen Microbiol, 1959, 20(3): 686-696.

[16] Steel C C, Drysdale R B. Electrolyte leakage from plant and fungal tissues and disruption of liposome membranes by α-tomatine. Phytochem, 1988, 27:1025-1030.

[17] Keukens E A, de Vrije T, Fabrie C H, et al. Dual specificity of sterol-mediated glycoalkaloid induced membrane disruption. Biochim Biophys Acta, 1992, 1110(2): 127-136.

[18] Keukens E A, de Vrije T, van den Boom C, et al. Molecular basis of glycoalkaloid induced membrane disruption. Biochim Biophys Acta, 1995, 1240(2): 216-228.

[19] Dolan L C, Matulka R A, Burdock G A. Naturally occurring food toxins. Toxins (Basel),2010, 2(9): 2289-2332.

[20] 李志文,周宝利,刘翔,等.茄科植物体内糖苷生物碱的生理生态活性研究进展.上海农业学报,2011,27(3):129-134. Li Z W,Zhou B L,Liu X,et al. The physiological ecology research progress of glycoalkaloids in Solanaceous crops.Acta Agriculturae Shanghai,2011,27(3):129-134.

[21] Norma F H, Luz Maria R V, Daniel G M. Computational note on the calculation of the dipolemoment, polarizability and hyperpolarizability of solanidine. Journal of Molecular Structure, Theochem, 2008, 849(30):122-123.

[22] Yoko I,Bunta W,Ryosuke S,et al. Steroidal glycoalkaloid profiling and structures of glycoalkaloids in wild tomato fruit.Phytochem,2013,95:145-157.

[23] Itkin M, Rogachev I, Alkan N, et al. Glycoalkaloid metabolism1 is required for steroidal alkaloid glycosylation and prevention of phytotoxicity in tomato. Plant Cell, 2011, 23(12): 4507-4525.

[24] Alice M M,Danielle H,Rebecca P,et al, Steroidal glycoalkaloids in Solanum chacoense.Phytochem, 2012,75:32-40.

[25] John P, Munafo J, Thomas J Gianfagna. Antifungal activity and fungal metabolism of steroidal glycosides of easter lily (Lilium longiflorum Thunb.) by the plant pathogenic fungus, Botrytis cinerea.J Agri Food Chem, 2011, 59: 5945-5954

[26] Christopher A, Hobby H T, Cipollini M. Efficacy and mechanisms of α-solasonine and α-solamargine-induced cytolysis on two strains of Trypanosoma cruzi.Journal of Chemical Ecology, 2004, 32(11):2405-2416.

[27] Miranda M A, Magalh L G, Tiossi R F J. Evaluation of the schistosomicidal activity of the steroidal alkaloids from Solanum lycocarpum fruits. Parasitol Res, 2012,12:257-262.

[28] Hisen C C, Fang H L, Lina W C. Inhibitory effect of Solanum nigrum on thioacetamide-induced liver fibrosis in mice. J Ethnopharmacol, 2008, 119(1): 117-121.

[29] Ding X, Zhu F, Yang Y, et al. Purification, antitumor activity in vitro of steroidal glycoalkaloids from black nightshade (Solanum nigrum L.). Food Chem, 2013, 141(2): 1181-1186.

[30] Friedman M, Fitch T E, Yokoyama W E. Lowering of plasma LDL cholesterol in hamsters by the tomato glycoalkaloid tomatine. Food Chem Toxicol, 2000, 38(7): 549-553.

[31] 陶永霞,刘洪海,王忠民,等. 番茄碱的研究现状及应用前景. 现代食品科技, 2006,22(2):253-256. Tao Y X, Liu H H,Wang Z M,et al.The present research situation and application prospect of tomatine.Modern Food Science and Technology,2006,22(2):253-256.

[32] Shakya R, Navarre D A. LC-MS analysis of solanidane glycoalkaloid diversity among tubers of four wild potato species and three cultivars (Solanum tuberosum). J Agric Food Chem, 2008, 56(16): 6949-6958.

[33] Arnqvist L, Dutta P C, Jonsson L, et al. Reduction of cholesterol and glycoalkaloid levels in transgenic potato plants by overexpression of a type 1 sterol methyltransferase cDNA. Plant Physiol, 2003, 131(4): 1792-1799.

[34] Moehs C P, Allen P V, Friedman M, et al. Cloning and expression of solanidine UDP-glucose glucosyltransferase from potato. Plant J, 1997, 11(2): 227-236.

[35] Rockhold D R, Corsini D L, Davies H V, et al. Metabolic compensation of steroidal glycoalkaloid biosynthesis in transgenic potato tubers: using reverse genetics to confirm the in vivo enzyme function of a steroidal alkaloid galactosyltransferase.Plant Sci, 2005, 168:267-273.

[36] Mccue K F, Allen P V, Shepherd L V, et al. The primary in vivo steroidal alkaloid glucosyltransferase from potato. Phytochem, 2006, 67(15): 1590-1597.

[37] Ginzberg I, Thippeswamy M, Fogelman E, et al. Induction of potato steroidal glycoalkaloid biosynthetic pathway by overexpression of cDNA encoding primary metabolism HMG-CoA reductase and squalene synthase. Planta, 2012, 235(6): 1341-1353.

[38] Itkin M, Heinig U, Tzfadia O,et al. Biosynthesis of antinutritional alkaloids in Solanaceous crops is mediated by clustered.Genes Science, 2013,341:175-179.

[1] LI Xiao-jin,LI Yan-meng,LI Zhen-kun,XU An-jian,YANG Xiao-xi,HUANG Jian. The Mechanism of Copper Accumulation Induced Autophagy in Hepatocytes of ATP7B-deficient Mice Based on RNA-sequencing[J]. China Biotechnology, 2021, 41(9): 10-19.
[2] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[3] HUANG Huan-bang,WU Yang,YANG You-hui,WANG Zhao-guan,QI Hao. Progress in Incorporation of Non-canonical Amino Acid Based on Archaeal Tyrosyl-tRNA Synthetase[J]. China Biotechnology, 2021, 41(9): 110-125.
[4] WU Xiu-zhi,WANG Hong-jie,ZU Yao. Functional Study of hoxa1a Regulating Craniofacial Bone Development in Zebrafish[J]. China Biotechnology, 2021, 41(9): 20-26.
[5] HE Li-heng,ZHANG Yi,ZHANG Jie,REN Yu-chao,XIE Hong-e,TANG Rui-min,JIA Xiao-yun,WU Zong-xin. Construction of Gene Co-expression Network and Identification of Hub Genes Related to Anthocyanin Biosynthesis Based on RNA-seq and WGCNA in Sweetpotato[J]. China Biotechnology, 2021, 41(9): 27-36.
[6] CHEN Ya-chao,LI Nan-nan,LIU Zi-di,HU Bing,LI Chun. Metagenomic Mining of Functional Genes Related to Glycyrrhizin Synthesis from Endophytes of Licorice[J]. China Biotechnology, 2021, 41(9): 37-47.
[7] YANG Liu,MOU Hao,XU Guo-yang,BAI Yun-chuan,YU Yuan-di. Analysis of the Difference in Color Development of Cultured Goatpox Virus Common Cells in X-gal Environment[J]. China Biotechnology, 2021, 41(9): 48-54.
[8] ZHAO Xiao-yu,XU Qi-ling,ZHAO Xiao-dong,AN Yun-fei. Enhancing Lentiviral Vector Transduction Efficiency for Facilitating Gene Therapy[J]. China Biotechnology, 2021, 41(8): 52-58.
[9] YANG Wan-bin,XU Yan,ZHUO Shi-xuan,WANG Xin-yi,LI Ya-jing,GUO Yi-fan,ZHANG Zheng-guang,GUO Yuan-yuan. Progress of Long Non-coding RNAs Related Epigenetic Modifications in Cancer[J]. China Biotechnology, 2021, 41(8): 59-66.
[10] GUO Man-man,TIAN Kai-ren,QIAO Jian-jun,LI Yan-ni. Application of Phage Recombinase Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(8): 90-102.
[11] LI Kai-xiu,SI Wei. Progress in the Treatment of Inflammatory Bowel Diseases by Exosomes Derived from Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(7): 66-73.
[12] WANG Yu-xuan,CHEN Ting,ZHANG Yong-liang. Research Progress on the Biological Function of MiR-148[J]. China Biotechnology, 2021, 41(7): 74-80.
[13] Bao-qi FENG,Jiao FENG,Miao ZHANG,Yang LIU,Rui CAO,Han-zhi YIN,Feng-xian QI,Zi-long LI,Shou-liang YIN. Screening of High Avermectin-producing Strains via Tn5 Transposon Mediated Mutagenesis[J]. China Biotechnology, 2021, 41(7): 32-41.
[14] LIANG Jin-gang,ZHANG Xu-dong,BI Yan-zhe,WANG Hao-qian,ZHANG Xiu-jie. Development Status and Prospect of Genetically Modified Insect-resistant Maize[J]. China Biotechnology, 2021, 41(6): 98-104.
[15] HU Xuan,WANG Song,YU Xue-ling,ZHANG Xiao-peng. Construction of a Destabilized EGFP Cell Model for Gene Editing Evaluation[J]. China Biotechnology, 2021, 41(5): 17-26.