Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2015, Vol. 35 Issue (1): 88-95    DOI: 10.13523/j.cb.20150113
    
Restore Heavy Metal Contaminated Soil with Energy Plants
JIA Wei-tao1, LV Su-lian1, FENG Juan-juan1, LI Yin-xin1, LI Ji-hong2,3, LI Shi-zhong2,3
1. Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
2. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China;
3. Beijing Engineering Research Center for Biofuels, Tsinghua University, Beijing 100084, China
Download: HTML   PDF(926KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

With the development of industry and agriculture, heavy metal pollution in soil is increasingly aggravated, which seriously threatens food production as well as human health. Because of its low cost, eco-friendliness and advantages on large-scale in situ remediation, phytoremediation has become an effective technology for the remediation of heavy metal contaminated soil in recent years. In this paper, the research and application progress of phytoremediation both in China and abroad is reviewed, and the soil remediation using energy plants especially sweet sorghum (Sorghum bicolor (Linn.) Moench) is highlighted for its great potential. Based on our research in Hunan Province, China, the advantages and feasibility of sweet sorghum in remediation of heavy metal contaminated soils is further discussed, and also the possible measures adopted to improve remediation efficiency is suggested. The plantation of sweet sorghum in heavy metal contaminated soils not only combine soil remediation with bio-energy production, but also transfer the heavy metals from the food chain into the energy chain, which shows broad application prospects.



Key wordsHeavy metal contaminated soil      Remediation      Energy plant      Sweet sorghum      Energy use     
Received: 12 August 2014      Published: 25 January 2015
ZTFLH:  Q819  
Cite this article:

JIA Wei-tao, LV Su-lian, FENG Juan-juan, LI Yin-xin, LI Ji-hong, LI Shi-zhong. Restore Heavy Metal Contaminated Soil with Energy Plants. China Biotechnology, 2015, 35(1): 88-95.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20150113     OR     https://manu60.magtech.com.cn/biotech/Y2015/V35/I1/88


[1] Morton-Bermea O, Hernández-Álvarez E, González-Hernández G, et al. Assessment of heavy metal pollution in urban topsoils from the metropolitan area of Mexico City. Journal of Geochemical Exploration, 2009, 101(3): 218-224.

[2] Nahmani J, Lavelle P. Effects of heavy metal pollution on soil macrofauna in a grassland of Northern France. European Journal of Soil Biology, 2002, 38(3): 297-300.

[3] 王海慧, 郇恒福, 罗瑛, 等. 土壤重金属污染及植物修复技术. 中国农学通报, 2009, 25(11): 210-214. Wang H H, Huan H F, Luo Y, et al. Soil contaminated by heavy metals and its phytoremediation technology. Chinese Agricultural Science Bulletin, 2009, 25(11): 210-214.

[4] Carlos G, Itzia A. Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technology, 2001, 77(3): 229-236.

[5] 王兆胡, 王鸣刚, 骆焕涛. 植物修复技术在重金属污染土壤治理中的应用. 甘肃科技, 2010, 26(5): 73-76. Wang Z H, Wang M G, Luo H T. The application of phytoremediation technology in the heavy metal contaminated soil. Gansu Science and Technology, 2010, 26(5): 73-76.

[6] 郑君健, 刘杰, 张学洪, 等. 重金属污染土壤植物修复及强化措施研究进展. 广东农业科学, 2013, (18): 159-164. Zheng J J, Liu J, Zhang X H, et al, Research progress of phytoremediation and strengthening measures for soil contaminated by heavy metals. Guangdong Agricultural Sciences, 2013, (18): 159-164.

[7] 黄益宗, 郝晓伟, 雷鸣, 等. 重金属污染土壤修复技术及其修复实践. 农业环境科学学报, 2013, 32(3): 409-417. Huang Y Z, Hao X W, Lei M, et al. The remediation technology and remediation practice of heavy metals-contaminated soil. Journal of Agro-Environment Science, 2013, 32(3): 409-417.

[8] Brooks R R, Lee J, Reeves R D, et al. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. Journal of Geochemical Exploration, 1977, 7: 49-57.

[9] Chaney R L, Malik M, Li Y M, et al. Phytoremendiation of soil metals. Current Opinion in Biotechnology, 1997, 8(3): 279-284.

[10] Baker A J M, Brooks R R, Pease A J, et al. Studies on copper and cobalt tolerance in three closely related taxa within the genus Silene L. (Caryophyllaceae) from Zaire. Plant and Soil, 1983, 73(3): 377-385.

[11] 韦朝阳, 陈同斌. 重金属超富集植物及植物修复技术研究进展. 生态学报, 2001, 21(7): 1196-1203. Wei C Y, Chen T B. Hyperaccumulators and phytoremediation of heavy metal contaminated soil: a review of studies in China and abroad. Acta Ecologica Sinica, 2001, 21(7): 1196-1203.

[12] 薛生国, 叶晟, 周菲, 等. 锰超富集植物垂序商陆(Phytolacca americana L.)的认定. 生态学报, 2008, 28: 6344-6347. Xue S G, Ye S, Zhou F, et al. Identity of Phytolacca americana L.(phytolaccaceae), pokeweed: a manganese hyperaccumulator plant. Acta Ecologica Sinica, 2008, 28: 6344-6347.

[13] Verbruggen N, Hermans C, Schat H. Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist, 2009, 181(4): 759-776.

[14] Baker A J M, McGrath S P, Sidoli C M D, et al. The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resources, Conservation and Recycling, 1994, 11(1): 41-49.

[15] 谢景千, 雷梅, 陈同斌, 等. 蜈蚣草对污染土壤中As、Pb、Zn、Cu的原位去除效果. 环境科学学报, 2010, 30(1): 165-171. Xie J Q, Lei M, Chen T B, et al. Phytoremediation of soil co-contaminated with arsenic, lead, zinc and copper using Pteris vittata L.: a field study. Journal of Environmental Sciences, 2010, 30(1): 165-171.

[16] 李长阁, 于涛, 傅桦, 等. 转基因植物修复重金属污染土壤研究进展. 土壤, 2007, 39: 181-189. Li C G, Yu T, Fu H, et al. Phytoremediation of heavy metal polluted soils with transgenic plants. Soils, 2007, 39: 181-189.

[17] 杨勇, 王巍, 江荣风, 等. 超累积植物与高生物量植物提取Cd效率的比较. 生态学报, 2009, 29(5): 2732-2737. Yang Y, Wang W, Jiang R F, et al. Comparision of phytoextraction efficiency of Cd with the hyperaccumulator Thlaspi caerulescens and three high biomass species. Acta Ecologica Sinica, 2009, 29(5): 2732-2737.

[18] Chen B C, Lai H Y, Lee D Y, et al. Using chemical fractionation to evaluate the phytoextraction of cadmium by switchgrass from Cd-contaminated soils. Ecotoxicology, 2011, 20(2): 409-418.

[19] Reed R L, Sanderson M A, Allen V G, et al. Growth and cadmium accumulation in selected switchgrass cultivars. Communications in Soil Science and Plant Analysis, 1999, 30(19-20): 2655-2667.

[20] Reed R L, Sanderson M A, Allen V G, et al. Cadmium application and pH effects on growth and cadmium accumulation in switchgrass. Communications in Soil Science and Plant Analysis, 2002, 33(7-8): 1187-1203.

[21] Wanat N, Austruy A, Joussein E, et al. Potentials of Miscanthus×giganteus grown on highly contaminated Technosols. Journal of Geochemical Exploration, 2013, 126-127: 78-84.

[22] Ezaki B, Nagao E, Yamamoto Y, et al. Wild plants, Andropogon virginicus L. and Miscanthus sinensis Anders, are tolerant to multiple stresses including aluminum, heavy metals and oxidative stresses. Plant Cell Reports, 2008, 27(5): 951-961.

[23] Liu X H, Shen Y X, Lou L Q, et al. Copper tolerance of the biomass crops Elephant grass (Pennisetum purpureum Schumach), Vetiver grass (Vetiveria zizanioides) and the upland reed (Phragmites australis) in soil culture. Biotechnology Advances, 2009, 27(5): 633-640.

[24] 侯新村, 范希峰, 武菊英, 等. 草本能源植物修复重金属污染土壤的潜力. 中国草地学报, 2012, 34(1): 59-64, 76. Hou X C, Fan X F, Wu J Y, et al. Potentiality of herbaceous bioenergy plants in remediation of soil contaminated by heavy metals. Chinese Journal of Grassland, 2012, 34(1): 59-64, 76.

[25] 黎大爵, 廖馥荪. 甜高粱及其利用. 北京: 科学出版社, 1992: 1-5. Li D J, Liao F S. Sweet Sorghum and Its Use. Beijing: Science Press, 1992: 1-5.

[26] 卢庆善, 朱翠云, 宋仁本, 等. 甜高粱及其产业化问题和方略. 辽宁农业科学, 1998, (5): 24-28. Lu Q S, Zhu C Y, Song R B, et al. The industrialization problems and strategies of sweet sorghum. Liaoning Agricultural Sciences, 1998, (5): 24-28.

[27] 康志河, 杨国红, 杨晓平, 等. 发展甜高粱生产开创农业能源新时代. 中国农学通报, 2005, 21(1): 340-341, 348. Kang Z H, Yang G H, Yang X P, et al. Developing sweet sorghum production, inaugurating the new age of energy agriculture. Chinese Agricultural Science Bulletin, 2005, 21(1): 340-341, 348.

[28] 谢光辉, 郭兴强, 王鑫, 等. 能源作物资源现状与发展前景. 资源科学, 2007, 29(5): 74-80. Xie G H, Guo X Q, Wang X, et al. An overview and perspectives of energy crop resources. Resources Science, 2007, 29(5): 74-80.

[29] 李十中. 发展多功能农业, 建设绿色"油田"和"粮仓". 中国农业科技. 2014, 66-69. Li S Z. Developing multifunctional agriculture, building a green "oil field" and "granary". China Rural Science and Technology. 2014, 66-69.

[30] Salman M, Athar M, Farooq U, et al. Insight to rapid removal of Pb (II), Cd (II), and Cu (II) from aqueous solution using an agro-based adsorbent Sorghum bicolor L. biomass. Desalination and Water Treatment, 2013, 51(22-24): 4390-4401.

[31] Metwali M R, Gowayed S M H, Al-Maghrabi O A, et al. Evaluation of toxic effect of copper and cadmium on growth, physiological traits and protein profile of wheat (Triticum aestivium L.), maize (Zea mays L.) and sorghum (Sorghum bicolor L.), World Applied Sciences Journal, 2013, 21(3): 301-314.

[32] 余海波, 宋静, 骆永明, 等. 典型重金属污染农田能源植物示范种植研究. 环境监测与技术, 2011, 23(2): 71-76. Yu H B, Song J, Luo Y M, et al. Field demonstration of energy plants production on heavy metal contaminated farm land. The Administration and Technique of Environmental Monitoring, 2011, 23(2): 71-76.

[33] Kuriakose S V, Prasad M N V. Cadmium stress affects seed germination and seedling growth in Sorghum bicolor L. Moench by changing the activities of hydrolyzing enzymes. Plant Growth Regulation, 2008, 54(2): 143-156.

[34] Soudek P, Petrová Š, Vaňková R, et al. Accumulation of heavy metals using Sorghum sp.. Chemosphere, 2013, 104: 15-24.

[35] Pinto A P, Mota A M, De Varennes A, et al. Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants. Science of the Total Environment, 2004, 326(1): 239-247.

[36] Pinto A P, de Varennes A, Gonalves M L S, et al. Sorghum detoxification mechanisms. Journal of Plant Nutrition, 2006, 29(7): 1229-1242.

[37] Zhang H, Shi W L, You J F, et al. Transgenic Arabidopsis thaliana plants expressing a β-1, 3-glucanase from sweet sorghum (Sorghum bicolor L.) show reduced callose deposition and increased tolerance to aluminium toxicity. Plant, Cell and Environment, 2014, doi: 10. 1111/pce. 12472.

[38] Zhu F Y, Li L, Lam P Y, et al. Sorghum extracellular leucine-rich repeat protein SbLRR2 mediates lead tolerance in transgenic Arabidopsis. Plant and Cell Physiology, 2013, 54(9): 1549-1559.

[39] 籍贵苏, 严永路, 吕芃, 等. 不同高粱种质对污染土壤中重金属的吸附研究. 中国生态农业学报, 2014, 22(2): 185-192. Ji G S, Yan Y L, Lv P, et al. Absorption of different sorghum accessions on heavy metals in polluted soil. Chinese Journal of Eco-Agriculture, 2014, 22(2): 185-192.

[40] 再吐尼古丽·库尔班, 吐尔逊·吐尔洪, 阿不都热依木·卡德尔,等. 甜高粱对土壤重金属Cd的吸收规律. 西北农林科技大学学报, 2012, 40(12): 162-156. Zaituniguli K, Tuerxun T, Abudureyimu K, et al. Accumulation of heavy metal Cd in sweet sorghum. Journal of Northwest A&F University, 2013, 40(12): 162-156.

[41] Angelova V R, Ivanova R V, Delibaltova V A, et al. Use of sorghum crops for in situ phytoremediation of polluted soils. Journal of Agricultural Science and Technology, 2011, 1(5): 693-702.

[42] Zaccheo P, Crippa L, Pasta V D M. Ammonium nutrition as a strategy for cadmium mobilisation in the rhizosphere of sunflower. Plant and Soil, 2006, 283(1-2): 43-56.

[43] Xie H L, Jiang R F, Zhang F S, et al. Effect of nitrogen form on the rhizosphere dynamics and uptake of cadmium and zinc by the hyperaccumulator Thlaspi caerulescens. Plant and Soil, 2009, 318(1-2): 205-215.

[44] Zhuang P, Shu W, Li Z, et al. Removal of metals by sorghum plants from contaminated land. Journal of Environmental Sciences, 2009, 21(10): 1432-1437.

[45] Luo B F, Du S T, Lu K X, et al. Iron uptake system mediates nitrate-facilitated cadmium accumulation in tomato (Solarium lycopersicum) plants. Journal of Experimental Botany, 2012, 63(8): 3127-3136.

[46] Piechalak A, Tomaszewska B, Kiewicz B D. Enhancing phytoremediative ability of Pisum sativum by EDTA application. Phytochemistry, 2003, 64(7): 1239-1251.

[47] 马莹, 骆永明, 滕应, 等. 内生菌强化重金属污染土壤植物修复研究进展. 土壤学报, 2013, 50(1): 195-202. Ma Y, Luo Y M, Teng Y, et al, Effects of endophytic enhancing phytoremediation of heavy metal contaminated soils. Acta Pedologica Sinica, 2013, 50(1): 195-202.

[48] Sheng X F, Xia J J, Jiang C Y, et al. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environmental Pollution, 2008, 156(3): 1164-1170.

[49] Ma Y, Rajkumar M, Luo Y M, et al. Inoculation of endophytic bacteria on host and non-host plants-Effects on plant growth and Ni uptake. Journal of Hazardous Materials, 2011, 195: 230-237.

[50] Zhang Y, He L, Chen Z, et al. Characterization of lead-resistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape. Journal of Hazardous Materials, 2011, 186(2): 1720-1725.

[51] Luo S L, Xu T Y, Chen L, et al. Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18. Applied Microbiology and Biotechnology, 2012, 93(4), 1745-1753.

[52] 能凤娇, 刘鸿雁, 马莹, 等. 根际促生菌在植物修复重金属污染土壤中的应用研究进展. 中国农学通报, 2013, 29(5): 187-191. Neng F J, Liu H Y, Ma Y, et al. Research progress on the applications of plant growth-promoting rhizobacteria in phytoremediation of heavy metal-contaminated soils. Chinese Agricultural Science Bulletin, 2013, 29(5): 187-191.

[53] Sheng X F, Xia J J. Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere, 2006, 64(6): 1036-1042.

[54] Ma Y, Rajkumar M, Freitas H. Inoculation of plant growth promoting bacterium Achromobacter xylosoxidanss train Ax10 for the improvement of copper phytoextraction by Brassica juncea. Journal of Environmental Management, 2009, 90(2): 831-837.

[55] Jing Y X, Yan J L, He H D, et al. Characterization of bacteria in the rhizosphere soils of polygonum pubescens and their potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. International Journal of Phytoremediation, 2014, 16(4): 321-333.

[56] 马淑敏, 孙振钧, 王冲. 蚯蚓-甜高粱复合系统对土壤镉污染的修复作用及机理初探. 农业环境科学学报, 2008, 27(1): 133-138. Ma S M, Sun Z J, Wang C. Remediation of Cd contaminated soil and its mechanism by earthworm-sweet broomcorn system. Journal of Agro-Evironment Science, 2008, 27(1): 133-138.

[57] Wang D, Li H, Wei Z, et al. Effect of earthworms on the phytoremediation of zinc-polluted soil by ryegrass and Indian mustard. Biology and Fertility of Soils, 2006, 43(1): 120-123.

[58] Zhang S, Hu F, Li H, et al. Influence of earthworm mucus and amino acids on tomato seedling growth and cadmium accumulation. Environmental Pollution, 2009, 157(10): 2737-2742.

[59] Shukla D, Kesari R, Mishra S, et al. Expression of phytochelatin synthase from aquatic macrophyte Ceratophyllum demersum L. enhances cadmium and arsenic accumulation in tobacco. Plant Cell Reports, 2009, 31(9), 1687-1699.

[60] Lee S, An G. Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant, Cell and Environment, 2009, 32(4): 408-416.

[61] Park J, Song W Y, Ko D, et al. The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. The Plant Journal, 2012, 69(2): 278-288.

[1] CHANG Lu, HUANG Jiao-fang, DONG Hao, ZHOU Bin-hui, ZHU Xiao-juan, ZHUANG Ying-ping. A Review on Bioremediation and Detection of Heavy Metal Pollution by Synthetic Biological Engineered Microorganisms and Biofilms[J]. China Biotechnology, 2021, 41(1): 62-71.
[2] SU Zhi-zhe, WANG Xue-hua, YANG Hua, SUN Huan, WEI Wei. Transcriptome Analysis of Cadmium Exposed Jatropha curcas[J]. China Biotechnology, 2016, 36(4): 69-77.
[3] . Advances in Phytoremediation and Genetic Modification of Plants for Enviromental Clean-up[J]. China Biotechnology, 2008, 28(4): 103-108.
[4] . Bioremediation of organophosphate[J]. China Biotechnology, 2007, 27(3): 127-127.