Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (11): 107-118    DOI: 10.13523/j.cb.20141115
    
Site-specific Recombination System and Its Application in Plant Genetic Engineering
WU Hua-la, ZHANG Yan-ling, LUO Xu, GE Fei, PAN Guang-tang, SHEN Ya-ou
Maize Research Institute of Sichuan Agricultural University, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Minsitry of Agriculture, Chengdu 611130, China
Download: HTML   PDF(1061KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Gene recombination system is required to meet the rapid development of plant gene engineering. With the advantages of highprecision and efficiency,site-specific recombination systems havebeen widely used in the field of genetic engineering. The mechanism, advantages and disadvantages, and application of three site-specific recombination systems are summarized in the article, which are expected to contribute to the researches on plant transgenic engineering.Meanwhile, the current research hotspot for gene editing technology,the CRISPR-Cas system is introduced briefly in this paper.



Key wordsSite-specific recombination system      Cre/lox      FLP/FRT      R/RS      CRISPR-Cas     
Received: 15 July 2014      Published: 25 November 2014
ZTFLH:  Q78  
Cite this article:

WU Hua-la, ZHANG Yan-ling, LUO Xu, GE Fei, PAN Guang-tang, SHEN Ya-ou. Site-specific Recombination System and Its Application in Plant Genetic Engineering. China Biotechnology, 2014, 34(11): 107-118.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20141115     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I11/107


[1] Tinland B.The integration of T-DNA into Plant genomes.Trends Plant Sci, 1996, (l):178-184.

[2] Horseh R B, Fraley R T, Rogers S G, et al. Inheritance of function foreign genes in plants.Science, 1984, 223:496-498.

[3] Horseh R B, Fry J E, Hoffmann N L, et al. A simple and general method for transferring genes into plants.Science, 1985, 227:1229-1231.

[4] Jame C.2012年全球生物技术/转基因作物商业化发展态势.中国生物工程杂志,2013,33(2):1-8.
Jame C. Biotechnology and commercialization of genetically modified crops development trend in 2012 in the world. 2013, 33(2):1-8.

[5] Jean F, David M. Transgene inactivation: plants fight back. Nature Biotechnology, 1994, 12:883-888.

[6] Matzke J M, Marjori A, Antonius M. How and why do Plants inactivate homologous transgene? Plant Physiol, 1995, 107:679-685.

[7] 谷欣, 黎燕.位点特异性重组技术研究进展.生物技术通讯, 2005, 16(4): 417-419.
Gu X, Li Y. Research progress ofCre/loxP site-specific recombination system. Letters in Biotechnology, 2005, 16(4): 417-419.

[8] Kilby N J, Snaith M R, Murray J A. Site-specific recombinases: tools for genome engineering. Trends Genetic, 1993, 9(12):413-21.

[9] Argos P, Landy A, Abremski K, et al. The integrase family of site-specific recombinases: regional similarities and global diversity. Embo J, 1986, 5(2): 433-440.

[10] Ghosh K, Van Duyne G. Cre-LoxP biochemistry. Methods, 2002, 28: 374-383.

[11] Hoess R H, Abremski K. Interaction of the bacteriophage P1 recombinase Cre with the recombining site loxp. Proc Nat1 Acad Sci USA, 1984, 81(4): 1026-1029.

[12] Esposito D, Scocca J J.The integrase family of tyrosine recombinases: evolution of a conserved active site domain.Nucleic Acids Res, 1997, 25:3605-3614.

[13] Guo F, Gopaul D N, Duyne van G D. Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature, 1997, 389:40-46.

[14] Voziyanov Y, Pathania S, Jayaram M. A general model forsite-specific recombination by the integrase family recombinases. Nucleic Acids Res, 1999, 27:930-941.

[15] Schmidt E E, Taylor D S, Prigge J R, et al. Illegitimate Cre-dependent chromosome rearrangements in transgenic mouse spermatids. Proc Natl Acad Sci USA, 2005, 97(25): 13702-13707.

[16] Turan S, Bode J. Site-specific recombinases: from tag-and-target- to tag-and-exchange-based genomic modifications. FASEB, 2011(25):4088-4106.

[17] Branda C S, Dymecki SM. Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice.Developmental Cell, 2004, 6(1): 7-28.

[18] Groth A C, Calos M P. Phage integrases: Biology and applications. J Mol Biol, 2004, 335: 667.

[19] Lyznik L A, Gordon-Kamm W J, Tao Y. Site-specific recombination for genetic engineering in plants. Plant Cell Rep, 2003(21):925-932.

[20] Dale E C, Ow D W. Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci USA, 1991, 88: 10558-10562.

[21] Ow D W. 2004 SIVB congress symposium proceeding: Transgene management via multiple site-specific recombination systems. In Vitro Cell Dev Biol-Plant, 2005, 41:213-219.

[22] Srivastava V, Ariza-Nieto M, Wilson A J. Cre-mediated site-specific gene integration for consistent transgene expression in rice. Plant Biotechnol, 2004, 2: 169-179.

[23] Day C D, Lee E, Kobayashi J, et al. Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced. Genes Dev, 2000, 14: 2869-2880.

[24] Srivastava V, Ow D W. Single-copy primary transformants of maize obtained through the co-introduction of a recombinase-expressing construct. Plant Mol Biol, 2001, 46:561-566.

[25] Ow D W. Recombinase-directed plant transformation for the post-genomic era. Plant Mol Biol, 2002, 48: 183-200.

[26] Sauer B, Enderson N. Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci USA, 1988, 85: 5166-5170.

[27] Onouchi H, Yokoi K, Machida C, et al. Operation of an efficient site-specific recombination system of Zygosac-charomyces rouxii in tobacco cells. Nucleic Acids Res, 1991, 19: 6373-6378.

[28] Kondrák M, Van Der Meer I M, Bánfalvi Z. Generation of marker-and backbone-free transgenic potatoes by site-specific recombination and a bi-functional marker gene in a non-regular one-border Agrobacterium transformation vector. Transgenic Res, 2006, 15(6): 729-737.

[29] Saelim L, Phansiri S, Suksangpanomrung M, et al. Evaluation of a morphological marker selection and excision system to generate marker-free transgenic cassava plants.Plant Cell Rep, 2009, 8 (3): 445-455.

[30] Maeser S, Kahmann R.The Gin recombinase of phage Mucancatalyse site-specific recombinationin plant protoplasts.Molecuar and General Genetics, 1991, 230:170-176.

[31] Gronlund J T, Lichota C S J, Merkle T, et al. Functionality of β/six site-specific recombination system in tobacco and Arabidopsis: A novel tool for genetic engineering of plant genomes. Plant Molecular Biology, 2007, 63: 545-556.

[32] Rubtsova M, Kempe K, Gils A et al. Expression of active streptomyces phage phiC31 integrase intransgenic wheat plants. Plant Cell Report, 2008, 27:1821-1831.

[33] Speck N A, Iruela-Arispe M L. Conditional Cre/loxP strategies for the study of hematopoietic stem cell formation. Blood Cells Mol Dis, 2009, 43(1): 6-11.

[34] Ow D W. GM maize from site-specific recombination technology, what next? Curr Opin Biotechnol, 2007, 18:115-120.

[35] Ghosh K, Van Duyne G. Cre-LoxP biochemistry. Methods, 2002, 28: 374-383.

[36] Hirano N, Muroi T, Takahashi H, et al. Site-specific recombinases as tools for heterologous gene integration. Appl Microbiol Biotechnol, 2011, 92(2) 227-239.

[37] Trinh K R, Morrison S L. Site-specific and directional gene replacement mediated by Cre recombinase. J Immunol Methods, 2000, 244(1): 185-193.

[38] Hoess R H, Ziese M, Sternberg N. P1 site-specific recombination: nucleotide sequence of the recombining sites. Proc Natl Acad Sci USA, 1982, 79(11): 3398-3402.

[39] Nagy A. Cre recombinase: the universal reagent for genome tailoring. Genesis, 2000, 26(2):99-109.

[40] 龙定沛,谭兵,赵爱春,等.Cre/lox位点特异性重组系统在高等真核生物中的研究.遗传,2012,34(2):177-189.
Long D P, Tan B, Zhao A CH, et al. Research progress ofCre/lox site-specific recombination system in higher eukaryotes. HEREDITAS, 2012, 34(2):177-189.

[41] Sternberg N, Sauer B, Hoess R, et al. Bacterio-phage P1 Cre gene and its regulatory region. Evidence for multiple promoters and for regulation by DNA methylation. J Mol Biol, 1986, 187(2): 197-212.

[42] Albert H, Dale E C, Lee E, et al. Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J, 1995, 7(4): 649-659.

[43] Hoess R H, Wierzbicki A, Abremski K. The role of the loxP spacer region in PI site-specific recombination. Nucl Acids Res, 1986, 14(5): 2287-2300.

[44] 孙家利,闫晓红,王力军,等. Cre/loxP 位点特异性重组系统在植物中应用的研究进展.中国农业科学, 2010, 43(6): 1099-1107.
Sun J L, Yan X H, Wang L J, et al. Research progress ofCre/loxP site-specific recombination system in higher eukaryotes. Scientia Agricultura Sinica, 2010, 43(6): 1099-1107.

[45] Lakso M, Sauer B, Mosinger B Jr, et al. Targeted oncogene activation by site-specific recombination in transgenic mice. Proc Natl Acad Sci USA, 1992, 89(14): 6232-6236.

[46] Birling M C, Gofflot F, Warot X. Site-specific recombinases for manipulation of the mouse genome. Methods Mol Biol, 2009, 561(Pt 2): 245-263.

[47] Li F F, Lan Y, Wang Y L, et al. Endothelial Smad4 maintains cerebrovascular integrity by activating N-cadherin through cooperation with notch. Dev Cell, 2011, 20(3): 291-302.

[48] Ronzaud C, Loffing J, Gretz N, et al. Inducible renal principal cell-specific mineralocorticoid receptor gene inactivation in mice. Am J Physiol Renal Physiol, 2011, 300(3): F756-F760.

[49] Dong J, Stuart G W. Transgene manipulation in zebrafish by using recombinases. Methods Cell Biol, 2004, 77: 363-379.

[50] Langenau D M, Feng H, Berghmans S, et al. Cre/lox-regulated transgenic zebrafish model with conditional myc-induced T cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA, 2005, 102(17): 6068-6073.

[51] Yoshikawa S, Kawakami K, Zhao X C. G2R Cre reporter transgenic zebrafish. Dev Dyn, 2008, 237(9): 2460-2465.

[52] Werdien D, Peiler G, Ryffel G U. FLP and Cre recombinase function in Xenopus embryos. Nucl Acids Res, 2001, 29(11): e53.

[53] Waldner C, Sakamaki K, Ueno N, et al. Transgenic Xenopus laevis strain expressing cre recombinase in muscle cells. Dev Dyn, 2006, 235(8): 2220-2228.

[54] Roose M, Sauert K, Turan G, et al. Heat-shock inducible Cre strains to study organogenesis in transgenic Xenopus laevis. Transgenic Res, 2009, 18(4): 595-605.

[55] Siegal M L, Hartl D L. Transgene coplacement and high efficiency site-specific recomb ination with the Cre/loxP system in Drosophila. Genetics, 1996, 144(2): 715-726.

[56] Heidmann D, Lehner C F. Reduction of Cre recombinase toxicity in proliferating Drosophila cells by estrogen- dependent activity regulation. Dev Genes Evol, 2001, 211(8-9): 458-465.

[57] Jasinskiene N, Coates C J, Ashikyan A,et al.High efficiency, site-specific excision of a marker gene by the phage P1 CRE-loxP system in the yellow fever mosquito, Aedes aegypti. Nucl Acids Res, 2003, 31(22): e147.

[58] Nimmo D D, Alphey L, Meredith J M,et al. High efficiency site-specific genetic engineering of the mos-quito genome. Insect Mol Biol, 2006, 15(2): 129-136.

[59] Russel S H, Hoopes J L, Odell J T. Directedexcision of atransgenefromthe plant genome. Mol Gen Genetic, 1992, 234: 49-59.

[60] Wang Y, Chen B J, Hu Y L, et al. Inducible excision of selectable marker gene from transgenic plants by the Cre/lox site-specific recombination system. Transgenic Research 2005(14):605-614.

[61] 陈松彪, 刘翔, 彭海英, 等. Cre/lox 介导除转双sck+cryI-Ac基因籼稻恢复系明恢86材料的选择标记基因. 植物学报, 2004, 46 (12): 1416-1423.
Chen SH B, Liu X, Peng H Y, et al. Deletion of the selectable marker gene in Indica Rice Restorer Line Minghui 86 material with double sck + cryI-Ac gene by Cre/lox. Chinese Bulletin of Botany, 2004, 46(12):1416-1423.

[62] Bai X, Wang Q, Chu C. Excision of a selective marker in transgenic rice using a novel Cre/loxP system controlled by a floral specific promoter. Transgenic Res, 2008, 17(6): 1035-1043.

[63] Djukanovic V, Lenderts B, Bidney D, et al. A Cre:: FLP fusion protein recombines FRT or loxP sites in trans-genic maize plants. Plant Biotechnol J, 2008, 6(8):770-781.

[64] Li Z, Xing A, Moon B P, et al. A Cre/loxP-mediated self-activating gene excision system toproduce marker gene free transgenic soybean plants. Plant Mol Biol, 2007, 65(3): 329-341.

[65] Cuellar W, Gaudin A, Solórzano D, et al. Self-excision of the antibiotic resistance gene nptII using a heat inducible Cre-loxP system from transgenic potato. Plant Mol Biol, 2006, 62(1/2): 71-82.

[66] Zhang Y Y, Li H X, Ouyang B, et al. Chemical-induced autoexcision of selectable markers in elite tomato plants transformed with a gene conferring resistance to lepidopteran insects. Biotechnol Lett, 2006, 28(16):1247-1253.

[67] Kopertekh L, Broer l, Schiemann J. Developmentally regulated specific DNA excision in transgenic plants B. napus plants. Plant Cell Report, 2009, 28:1075-1083.

[68] Kopertekh L, Broer I, Schuemann J.Developmentally regulated Cre-lox system to generate Marker-free transgenic Brassica napus plants. Methods Mol Biol, 2012, 847: 335-350.

[69] Alber T H, Dale E C, Lee E, et al. Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J, 1995, 7: 649-659.

[70] Vergunst A C, Jansen L E, Hooykaas P J. Site-specific integration of Agrobacterium T- DNA in Arabidopsis thaliana mediated by Cre recombinase. Nucleic Acids Re-search, 1998, 26 (11): 2729-2734.

[71] De Buck S, Peck I, De Wilde C, et al. Generation of Single-copy T- DNA Arabidopsis Transformants by the CRE/loxP recombination mediated Resolution System. PlantPhysiol, 2007, 145: 1171-1182.

[72] Srivastav A V, Anderson O D, Ow D W. Single-copy transgenic wheat generated through the resolution of complex integration patterns. Proc Natl Acad Sci USA, 1999, 96(20): 11117-11121.

[73] Vega J M, Yu W C, Han F P, et al. Agrobacterium-mediated transformation of maize (Zea mays) with Cre-lox site specific recombination cassettes in BIBAC vectors. Plant Mol Biol, 2008, 66(6): 587-598.

[74] Broach J R, Hicks J B. Replication and recombination functions associated with the yeast plasmid, 2 μ circle.Cell, 1980,21(2):501-508.

[75] Volker F C, Wilson D W, Broach J R. Deoxyribonucleic acid plasmids in yeasts. Microbiological Review, 1989, 53(3):299-317.

[76] Esposito D, Scocca J J. The integrase family of tyrosine recombinases: evolution of a conserved active site domain. Nucleic Acids Res., 1997, 25(18):3605-3614.

[77] Nunes-Düby S E, Kwon H J, Tirumalai R S, et al. Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res, 1998, 26(2):391-405.

[78] Futcher A B. The 2Lm circle plasmid of Saccharomyces cerevisiae. Yeast, 1988, 4(1): 27-40.

[79] Jayaram M, Holliday junctionsin FLP recombination: resolution by steparrest mutants of FLP protein. Proceedings of the National Academy of Sciences of the United States of America, 1985, 82:5875-5879.

[80] Senecoff J F, Rossmeissl P J, Cox M M. DNA recognition by the FLP recombinase of the yeast 2u plasmid. A mutational analysis of the FLP binding site. Journal of Molecular Biology, 1988, 201(2):405-421.

[81] Schlake T, Bode J. Use of mutated FLP recognition target FRT sites for the exchange of expression cassettes at defined chromosonmal loci. Biochenmistry, 1994, 33(43):12746-12751

[82] 赵爱春,龙定沛,谭兵,等.FLP/FRT位点特异性重组系统在高等真核生物中的研究进展.中国农业科学,2011,,4(15):3252-3263.
Zhao A C, Long D P, Tan B, et al. Research progress ofFLP/FRT site-specific recombination system in higher eukaryotes. Scientia Agricultura Sinica, 2011, 4(15):3252-3263.

[83] Andrews B J, Proteau G A, Beatty L G, et al.The FLP recombinase of the 2u circle DA of yeast: interaction with its target sequences.Cell,1985,40(4):795-803.

[84] Lyznik L A, Mitchell J C, Hirayama L, et al. Activity of yeast FLP recombinase in maize and rice protoplasts. Nucleic Acids Research, 1993, 21(4): 969-975.

[85] Wiberg F C, Rasmussen S K, Frandsen T P, et al. Production of target-specific recombinant human polyclonal antibodies in mammalian cells. Biotechnology and Bioengineering, 2006, 94(2): 396-405.

[86] Golic K G, Lindquist S. The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell, 1989, 59(3): 499-509.

[87] Parks A L, Cook K R, Belvin M, et al. Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nature Genetics, 2004, 36(3): 288-292.

[88] Horn C, Handler A M. Site-specific genomic targeting in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(35): 12483-12488.

[89] Luo L. Fly MARCM and mouse MADM: genetic methods of labeling and manipulating single neurons. Brain Research Reviews, 2007, 55(2): 220-227.

[90] Morris A C, Schaub T L, James A A. FLP-mediated recombination in the vector mosquito, Aede saegypti. Nucleic Acids Research, 1991, 19(21): 5895-5900.

[91] Davis M W, Mo rton J J, Carroll D, et al. Gene activation using FLP recombinase in C. elegans. PLoS Genetics, 2008, 4(3): e1000028.

[92] Wong A C, Draper B W, Van Eenennaam A L. FLPe functions in zebrafish embryos. Transgenic Research, 2011,20(2):409415.

[93] Vázquez-Manrique R P, Legg J C, Olofsson B, et al. Improved gene targeting in C. elegans using counter-selection and Flp-mediated marker excision. Genomics, 2010, 95(1): 37-46.

[94] Werdien D, Peiler G, Ryffel G U. FLP and Cre recombinase function in Xenopus embryos. Nucleic Acids Research, 2001, 29(11): e53.

[95] Ryffel G U,Werdien D,Turan G, et al. Tagging muscle cell lineages in development and tail regeneration using Cre recombinase in transgenic Xenopus. Nucleic Acids Research, 2003, 31(8): e44.

[96] Woo H J,Cho H S,Lim S H,et al. Auto-excision of selectable marker genes from transgenic tobacco via a stress inducible FLP/FRT site-specific recombination system. Transgenic Res,2009(18)455-465.

[97] Luo K, Sun M, Deng W, et al. Excision of selectable marker gene from transgenic tobacco using the GM gene-deletor system regulated by a heat-inducible promoter.Biotechnology Letters, 2008, 30(7): 1295-1302.

[98] Li B,Li N,Duan X,et al. Generation of marker-free transgenic maize with improved salt tolerance using the FLP/FRT recombination system. Journal of Biotechnology,2010(145):206-213.

[99] Sonti RV, Tissi8er AF, Wong D, et al. Activity of the yeast FLP recombinase in Arabidopsis. Plant Molecular Biology, 1995, 28(6): 1127-1132.

[100] Hu Q, Kononowicz-Hodges H, et al. FLP recombinase-mediated site-specific recombination in rice. Plant Biotechnology Journal, 2008, 6(45): 176-188.

[101] Araki H, Jearnpipatkul A, Tatsumi H, et al. Molecular and functional organization of yeast plasmid pSR1.Journal Molecular Biology, 1985,182:191203.

[102] Matsuzaki H, Nakajima R, Nishiyama J, et al. Chromosome engineering in Sacchromyces cerevisiae by wsing a sitespecific recombination system of a yeast plasmid. Journal of Bacteriology, 1990,172:610- 618.

[103] Sugita K, Kasahara T, Matsunaga E, et al. A transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency. The Plant Journal, 2000, 5:461469.

[104] Ebinuma H, Matsunaga E, Yamakado M, et al. Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proc Natl Acad Sci USA, 1997, 94:2117-2121.

[105] Sugita K, Kasahara T, Ebinuma H, et al. A transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency.Plant J, 2000, 22:461-469.

[106] Kondrak M, Vander Meer I M, Banfalvi Z. Generation of marker-and-backbone-free transgenic potatoes by site-specific recombination and a bifunctional marker gene in a nonregular one-border Agrobacterium transformation vector. Transgenic Res, 2006, 15:729-737.

[107] Jinek M, Chylinski K, Fonfara I, et al. Aprogrammable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337:816-821.

[108] Sorek R, Lawrence C M, Wiedenheft B. CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu Rev Biochem, 2013, 82: 237-266.

[109] Deltcheva E, Chylinski K, Sharma C M, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 2011, 471: 602-607.

[110] Belhaj K, Chaparro-Garcia A, Kamoun S, et al. Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods, 2013, 9: 39.

[111] Li J F, Norville J E, Aach J,et al.Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9.Nat Biotechnol, 2013,31:688-691.

[112] Shan Q, Wang Y, Li J, et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol, 2013, 31:686-688

[113] Malil P, Yang L H, Kexin M, et al. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121):823-826.

[114] Thomas G, Charles A, Gersbach, et al. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 2013, 31(7):397-405.

[115] Li J F, Norville J E, Aach J, et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9.Nat Biotechnol, 2013, 31:688-691.

[116] Miao J, Guo D, Zhang J, et al. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res, 2013, 23: 1233-1236.

[1] GUO Sheng-nan, LI Xin-xiao, WANG Feng, LIU Kun-mei, DING Na, HU Qi-kuan, SUN Tao. Establishment and Identification of the Neocortex and Hippocampus GABRG2 Knockout Mice and Its Preliminary Study in Generalized Epilepsy with Febrile Seizures Plus[J]. China Biotechnology, 2020, 40(3): 9-20.
[2] YU Chun-yang,ZHANG Chun,GUO Le,WAN Pan-pan,HUANG Yue,WANG Feng,LIU Kun-mei. Construction of Hippocampal Cortical Specific Knockout AEG-1 Gene Mice and Preliminary Study on Its Behavior[J]. China Biotechnology, 2020, 40(11): 10-20.
[3] Chao-jing GUO,Qiong ZHU,Xin ZHANG,Lei LI,Ling-qiang ZHANG. Generation and Phenotypic Analysis of Hepatic-specific Deubiquitinase OTUB1 Knockout Mice Model[J]. China Biotechnology, 2019, 39(5): 80-87.
[4] LU Hai-yan,LI Jia-man,SUN Si-fan,ZHANG Xiao-mao,DING Juan-juan,ZOU Shao-lan. Construction of an Auxotrophic Mutant from an Industrial Saccharomyces cerevisiae Strain by CRISPR-Cas9 System[J]. China Biotechnology, 2019, 39(10): 67-74.
[5] Chun-xiao SU,Xiao-yu ZHANG,Han ZENG,Ya-xi CHEN,Xiong-zhong RUAN,Ping YANG. Establishment and Identification of Liver-Specific CD36 Knockout Mice[J]. China Biotechnology, 2018, 38(8): 26-33.
[6] SUN Yi-ping, WANG Yue, JIN Zhen, WANG Xiao-yan, SUN Lei, ZHANG Xuan, FENG Chong, ZHOU Xiao-hua. Establishment and Phenotype Analysis of SHBG Knockout Mouse Model[J]. China Biotechnology, 2017, 37(8): 39-45.
[7] ZHU Shao-yi, GUAN Li-hong, LIN Jun-tang. CRISPR-Cas9 System and Its Applications in Disease Models[J]. China Biotechnology, 2016, 36(10): 79-85.
[8] LIU Rui-qi, WANG Wei-wei, WU Yong-yan, ZHAO Qiu-yun, WANG Yong-sheng, QING Su-zhu. Research Progress of CRISPR-Cas9 and Its Application in Gene Therapy[J]. China Biotechnology, 2016, 36(10): 72-78.
[9] ZHANG Si-min, GAO Yue, FANG Yu-dan, ZHANG Jin-mai, ZHANG Jin-zhi. Construction of Mammary Gland-specific and Effective Expression Vector for Mammary Gland Bioreactor[J]. China Biotechnology, 2014, 34(7): 49-55.