Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (11): 76-84    DOI: 10.13523/j.cb.20141111
    
Construction of Engineered Bacteria for Efficient Lipopeptide Production by Protoplast Fusion
LIANG Xiao-long1,2, ZHAO Feng3, SHI Rong-jiu1, ZHOU Ji-dong1,2, HAN Si-qin1, ZHANG Ying1
1. Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
Download: HTML   PDF(654KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Bacillus can produce a variety of physiologically active substances and has broad application potential in environmental remediation, biological control, oil recovery and other fields. Bacillus mojavensis JF-2 and B. amyloliquefaciens BQ-6 are high-yielding strains of lipopeptide, screened from oil field, but their practical application in microbial enhanced oil recovery (MEOR) is restricted by oxygen concentration, salt concentration and pH. It is a simple and efficient approach to transform microbial metabolic functions by protoplast fusion. In this research, the above two Bacillus strains were taken as the research objects, and a L9(34) orthogonal experiment was conducted to explore the optimal conditions for protoplast preparation and regeneration. In addition, engineered bacteria were constructed by inactivated protoplast fusion. The results showed that cell age, lysozyme concentration and enzymolysis time significantly affected the rate of Bacillus protoplast preparation and regeneration rates (P<0.05), and the preparation rate was improved markedly when the Bacillus cells were repeatedly washed with sterile normal saline before enzymolysis. The optimum conditions for protoplast formation and regeneration of both Bacillus strains were: 7-hour cell age, 2.5 mg/ml lysozyme concentration, 30-minute enzymolysis, and 42 ℃ of lysozyme temperature. Fusant HY-4, salt tolerance of 15% and pH range of 4.0 to 9.0 for lipopeptide production, was capable of producing metabolic lipopeptide under both aerobic and anaerobic conditions, and it exhibited a rapid anaerobic growth (dry cell weight>1.6 g/L). In summary, fusant HY-4 has a great application potential, and this research laid a foundation for Bacillus genetic breeding methodology, providing a reference for breeding oil-flooding microorganisms.



Key wordsBacillus      Protoplast      Orthogonal experimental design      MEOR      Genetic breeding     
Received: 23 September 2014      Published: 25 November 2014
ZTFLH:  Q939  
Cite this article:

LIANG Xiao-long, ZHAO Feng, SHI Rong-jiu, ZHOU Ji-dong, HAN Si-qin, ZHANG Ying. Construction of Engineered Bacteria for Efficient Lipopeptide Production by Protoplast Fusion. China Biotechnology, 2014, 34(11): 76-84.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20141111     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I11/76


[1] Buchan R E, Gibans N E. Trans. Institute of Moicrobiology, Chinese Academy of Sciences. Berger's Manual of Systematic Bacteriology. 8th Ed. Beijing: Science Press, 1984: 729-731.

[2] Zhao X, Ye H, Tan X Q, et al. Optimization of antifungal lipopeptide producton from Bacillus sp. BH072 by response surface methodology. Journal of Microbiology, 2014, 52(4): 324-332.

[3] Zhu Z, Sun L F, Huang X L, et al. Comparison of the kinetics of lipopeptide production by Bacillus amyloliquefaciens XZ-173 in solid-state fermentation under isothermal and non-isothermal conditions. World Journal of Microbiology and Biotechnology, 2014, 30: 1615-1623.

[4] 刘伊强,王雅萍,潘乃穟, 等. 芽孢杆菌原生质体的形成、再生及种间融合.微生物学报,1994, 34(1): 76-80. Liu Y Q, Wang Y P, Pan N S, et al. Formation, regeneration and interspecific fusion of Bacillus protoplast. Acta Microbiology Sinica, 1994, 34(1): 76-80.

[5] 张艳群, 航线, 韦小敏, 等. 两株生防芽孢细菌筛选、鉴定及拮抗研究.微生物学通报,2014, 41(2): 281-289. Zhang Y Q, Hang X, Wei X M, et al. Screening and identification and antagonism research of two biocontrol Bacillus strains. Microbiology China, 2014, 41(2): 281-289.

[6] 李宜强, 沈传海, 景贵成, 等. 微生物降解HPAM的机理及其应用.石油勘探与开发, 2006, 33(6): 738-742. Li Y Q, Shen C H, Jing G C, et al. Mechanism of HPAM-biodegradation and its application. Petroleum Exploration & Development, 2006, 33(6): 738-742.

[7] 李盛贤, 康宏, 迟双会, 等. 三次采油菌种982和L-50的单井吞吐试验.油田化学,2008, 25(2): 181-185. Li S X, Kang H, Chi S H, et al. Results of first ccycle microbes well huffing-puffing trial in Pubei, Daqing. Oilfield Chemistry, 2008, 25(2): 181-185.

[8] 郭万奎,侯兆伟,石梅,等. 短短芽孢杆菌和蜡状芽孢杆菌才有机理及其在大庆特低渗透油藏的应用. 石油勘探与开发,2007, 34(1):73-78. Guo W K, Hou Z W, Shi M, et al. The recovery mechanism and application of Brevibacillus brevis and Bacillus cereus in extra-low permeability reservoir of Daqing. Petroleum Exploration & Development, 2007, 34(1):73-78.

[9] Gao C, Bellout A B. An evaluation for two Bacillus strains in improving oil recovery in carbonate reservoirs. Petroleum Science and Technology, 2013, 31(11): 1168-1174.

[10] Kryachko Y, Nathoo S, Lai P, et al. Prospects for using native and recombinant rhamnolipid producers for microbially enhanced oil recovery. International Biodeterioration & Biodegradation, 2013, 81: 133-140.

[11] Wang Q H, Fang X D, Bai B J, et al. Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery. Biotechnology and Bioengineering, 2007, 98(4): 842-853.

[12] Feng L Z, Zhang S, Liu Z. Graphene based gene transfection. Nanoscale, 2011, 3: 1252-1257.

[13] Cha M, Lee N, Kim M, et al. Heterologous production of Pseudoumonas aeruginosa EMS1 biosurfactant in Pseudomonas putida. Bioresource Technology, 2007, 99: 2192-2199.

[14] Chen H L, Zhan H Y, Chen Y C, et al. Construction of engineering microorganism degrading chlorophenol efficiently by protoplast fusion technique. Environmental Progress & Sustainable Energy, 2013, 32(3): 443-448.

[15] Lu J, Dang Z, Lu G N, et al. Biodegradation kinetics of phenanthrene by a fusant strain. Current Microbiology, 2012, 65: 225-230.

[16] 张禹,毛淑红,路富平,等. 原生质体融合技术选育分解草酸乳酸菌菌株的研究. 生物技术通报,2013, 1: 186-190. Zhang Y, Mao S H, Lu F P, et al. Screening of the oxalate-degrading Lactobacillus strains using protoplast fusion technology. Biotechnology Bulletin, 2013, 1: 186-190.

[17] Sun S S, Luo Y J, Cao S Y, et al. Construction and evaluation of an exopolysaccharide-producing engineered bacterial strain by protoplast fusion for microbial enhanced oil recovery. Bioresource Technology, 2013, 144: 44-49.

[18] 宋绍富, 张忠智, 俞理,等. 原生质体融合技术构建高效驱油细胞工程菌的研究.油田化学,2004, 21(2): 187-190. Song S F, Zhang Z Z, Yu L, et al. Construction of cell engineering bacteria for MEOR through protoplast fusion. Oilfield Chemistry, 2004, 21(2): 187-190.

[19] Javaheri M, Jenneman G E, McInerny M J, et al. Anaerobic production of a biosurfactant by Bacillus licheniformis JF-2. Applied and Environmental Microbiology, 1985, 50(3): 698-700.

[20] Folmsbee M, Duncun K, Han S O, et al. Re-identification of the halotolerant, biosurfactant-producing Bacillus licheniformis strain JF-2 as Bacillus mojavensis strain JF-2. Applied and Environmental Microbiology, 2006, 29: 645-649.

[21] 穆国俊,董毓琨,黄冠辉. 苏云金芽孢杆菌Bt-3701与巨大芽孢杆菌Bm-107种间原生质体融合. 微生物学报,1995, 35(5): 322-326. Mu G J, Dong Y K, Huang G H. Interspecific protoplast fusion between Bacillus thuringensis Bt-3701 and Bacillus megaterium Bm-107. Acta Microbiologica Sinica, 1995, 35(5): 322-326.

[22] 梁惠仪,郭勇. 全基因组重排育种技术提高豆豉纤溶酶菌产酶量. 中国生物工程杂志,2007, 27(10): 39-43. Liang H Y, Guo Y. Whole genome shuffling to enhance activity of fibrinolytic enzyme-producing strains. China Biotechnology, 2007, 27(10): 39-43.

[23] 罗玉双,丁学知,夏立秋,等. 多杀菌素生产菌原生质体的制备条件及其再生菌株生理特性. 生物工程学报,2009, 25(3): 360-367. Luo Y SH, Ding X ZH, Xia L Q, et al. Conditions for protoplast preparation of spinosyn-producing strain and the physiological properties of protoplast-regenerated strains. Chinese Journal of Biotechnology, 2009, 25(3): 360-367.

[24] Li M, Yi P, Liu Q, et al. Biodegradation of benzoate by protoplast fusant via intergeneric protoplast fusion between Pseudomonas putida and Bacillus subtili. International Biodeterioration & Biodegradation, 2013, 85: 577-582.

[25] 严菊芬,齐宁波,王素萍,等.温莪术内生真菌Gibberella moniliformis EZG0807诱变及其诱变株遗传稳定性研究.中国生物工程杂志,2014, 34(5): 23-29. Yan J F, Qi N B, Wang S P, et al. Mutagenesis and mutant genetic stability of the endophytic fungus Gibberella moniliformis EZG0807 from Curcuma wenyujin. China Biotechnology, 2014, 34(5): 23-29.

[26] 王大威,张健,齐义彬,等. 稠油降解菌的筛选及其对胶质降解作用. 微生物学报,2012, 52(3): 353-359. Wang D W, Zhang J, Qi Y B, et al. Isolation of viscous-oil degrading microorganism and biodegradation to resin. Acta Microbiologica Sinica, 2014, 34(5): 23-29.

[27] 孙剑秋,周东坡,平文祥. 灭活微生物原生质体融合研究的进展. 中国医学生物技术应用杂志,2002, 2: 29-32. Sun J Q, Zhou D P, Ping W X, et al. The review of the studies on the fusion of inactive microbial protoplast. The Chinese Academic Medical Magazine of Organisms, 2002, 2: 29-32.

[28] Wang C, Wu G, Li Y, et al.Genome shuffling of Penicillium citrinum for enhanced production of nuclease P1. Applied and Biochemistry and Biotechnology, 2013, 70(6): 1533-1545.

[29] Fordor K, Demiri E, Alfoldi L. Polyethylene Glycol-induced fusion of heat-inactivated and living protoplasts of Bacillus megaterium. Journal of Bacteriology, 1978, 135(1): 68-70.

[30] 赵春苗,徐春厚. 原生质体融合技术及在微生物育种中的应用. 中国微生态学杂志,2012, 24(4): 379-382. Zhao C M, Xu CH H. Protoplast fusion technique and its application in microbial breeding. Chinese Journal of Microecology, 2012, 24(4): 379-382.

[31] 毛雨,王丹,黄占斌,等. 微生物原生质体融合育种技术及其应用. 中国生物工程杂志,2010, 30(1): 93-97. Mao Y, Wang D, Huang ZH B, et al. Application of microbial protoplast fusion technology in genetic breeding. China Biotechnology, 2010, 30(1): 93-97.

[32] Folmsbee M J, McInerney M J, Nigle D P. Anaerobic growth of Bacillus mojavensis and Bacillus subtilis requires deoxyribonucleosides or DNA. Applied and Environmental Microbiology, 2004, 70(9): 5252-5257.

[33] Amstrong R T, Wildenschild D. Investigating the pore-scale mechanisms of microbial enhanced oil recovery. Journal of Petroleum Science and Engineering, 2012, 94-95: 155-164.

[34] Amstrong R T, Wildenschild D. Microbial enhanced oil recovery in fractional-wet systems: a pore-scale investigation. Transport in Porous Media, 2012, 92(3): 819-835.

[35] 刘振华,魏鸿刚,李元广,等. 多粘类芽孢杆菌胞外多糖在微生物农药型中的功能研究.农药学学报,2011, 13(6):603-607. Liu ZH H, Wei H G, Li Y G, et al. Function of polysaccharides from Paenibacillus polymyxa in microbial pesticide formulation. Chinese Journal of Pesticide Science, 2011, 13(6):603-607.

[36] 吕梅乐,朱亮,戴昕,等. 胞外蛋白对微生物聚集体的形成及特性的影响.应用生态学报,2013, 24(3): 878-884. Lv M L, Zhu L, Dai X, et al. Effects of extracellular protein on the formation and properties of microbial assemblages: A review.Chinese Journal of Applied Ecology, 2013, 24(3): 878-884.

[37] 李永刚,郭晓慧. 枯草芽孢杆菌BS2对葡萄灰霉病菌抑菌机制的初步探讨.微生物学通报,2010, 37(5): 721-725. Li Y G, Guo X H. Preliminary exploration for inhibitory mechanism of Bacillus subtilis strain BS2 to Botrytis Cinerea. Microbiology China, 2010, 37(5): 721-725.

[38] 赵峰,张颖,李慧,等. 三种假单胞菌CaCl2法感受态细胞制备及转化条件. 应用生态学报,2013, 24(3): 788-794. Zhao F, Zhang Y, Li H, et al. CaCl2-heat shock preparation of competent cells of three Pseudomonas strains and related transformation conditions. Chinese Journal of Applied Ecology, 2013, 24(3): 788-794.

[39] 李淼,增白圈,冯金儒. 高产纤维素菌株原生质体制备及再生条件.中南林业科技大学学报,2013, 33(12): 174-180. Li M, Zeng B W, Feng J R. Protoplast preparation and regeneration conditions of Penicillium Q5 and Bacillus subtilis k3. Journal of Central South University of Forestry & Technology, 2013, 33(12): 174-180.

[40] 涂永勤,肖崇刚. 蜡质芽孢杆菌(Bacillus cereus)原生质体形成与再生条件研究.生物学杂志,2005, 22(5): 18-20. Tu Y Q, Xiao CH G. Studies on protoplast formation and regeneration of Bacillus cereus strains TO-8-24-2. Journal of Biology, 2005, 22(5): 18-20.

[41] 武妙璇,李梦,杨露,等. 动物肠道优势需氧菌原生质体形成与再生研究.河北农业大学学报,2013, 36(4): 70-75. Wu M X, Li M, Yang L, et al. Protoplast preparation and regeneration of the dominant aerobic bacteria isolated from feces of animals. Journal of Agricultural University of Hebei, 2013, 36(4): 70-75.

[1] Li ZHANG,Juan DING,Yu-cheng HAO,Cheng YE,Yang PU. Identification of a Marine Microalgae and Optimization of Protoplast Preparation[J]. China Biotechnology, 2018, 38(11): 42-50.
[2] WEN Sai, YANG Jian-guo. Transformation of Undomesticated Strains of Bacillus licheniformis by Protoplast Electroporation[J]. China Biotechnology, 2015, 35(7): 76-82.
[3] LIU Ming-xia, ZHANG Feng-ying, ZHOU Qiang, SUN Chao, CHEN Wei-ping. Breeding Erythorbic Acid Yield Strains by Protoplast Mutagenesis[J]. China Biotechnology, 2013, 33(6): 30-37.
[4] SHEN Nai-kun, QIN Yan, WANG Cheng-hua, ZHU Jing, LIAO Si-ming, HUANG Ri-bo. Screening, Identification and Preliminary Fermentation of a High Succinic Acid Producing Strain[J]. China Biotechnology, 2012, 32(10): 57-62.
[5] ZHAI Ya-nan, GUO Hao, WEI Hao, ZHANG Dong-liang, YAO Shu-lin, HAO Hui, BIE Xiao-mei. Current State in Fermentation, Isolation, and Purification of Lipopeptide Antibiotics from Bacillus sp.[J]. China Biotechnology, 2011, 31(11): 114-122.
[6] . The applications and progress of genome shuffling[J]. China Biotechnology, 2010, 30(07): 0-0.
[7] MAO Yu, WANG Dan, LI Jiang, GENG Jian-Min, HUANG Tie-Bin. Protoplast Preparation and Regeneration of Actinobacillus succinogenes[J]. China Biotechnology, 2010, 30(06): 103-108.
[8] MAO Yu, WANG Dan, HUANG Tie-Bin, GENG Jian-Min. Application of Microbial Protoplast Fusion Technology in Genetic Breeding[J]. China Biotechnology, 2010, 30(01): 93-97.
[9] . Advances on Isolation and Fusion of Plant Subprotoplasts[J]. China Biotechnology, 2009, 29(09): 0-0.
[10] GUAN Yu-Xia, LA Ji-Xian, YAN An-Xin, ZHENG Jing-Shi. Study on the High Yield Strain of Gentamicin Producer by Protoplast Fused and Fermentor Test[J]. China Biotechnology, 2009, 29(08): 62-67.
[11] LI Ji, LI Fan, LIU Chen-Guang, LIN Jian-Gang, DIAO Xin-Qing, GE Xu-Meng, BAI Feng-Wu. Breeding of Yeast Fusant for Efficient Ethanol Fermentation from Xylose[J]. China Biotechnology, 2009, 29(06): 74-78.
[12] . Whole genome shuffling to enhance activity of fibrinolytic enzyme-producing strains[J]. China Biotechnology, 2007, 27(10): 39-43.
[13] . Advances of Genetic Transformation of Tall Fescue[J]. China Biotechnology, 2006, 26(08): 15-21.
[14] . Cloning and expression of a fragment of swine HEV ORF2 AG02 in E.coli and the Development of Indirect ELISA with[J]. China Biotechnology, 2006, 26(08): 37-41.