Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (8): 97-104    DOI: 10.13523/j.cb.20140815
    
A Review for Microbial Production of C4 Dicarboxylatic Acids
XU Guo-qiang1,2,3, WU Man-zhen1,3
1. National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wusi 214122, China;
2. The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wusi 214122, China;
3. School of Biotechnology, Jiangnan University, Wuxi 214122, China
Download: HTML   PDF(605KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

As metabolites in TCA cycle, C4 dicarboxylatic acids such as malic acid, fumaric acid and succinic acid, are widely used in food, pharmaceutical and chemical industries, the potential total annual demand for C4 dicarboxylatic acids is very huge. C4 dicarboxylatic acids production by microbial fermentation is attracting increasing attention. Some microorganism isolated from nature can produce large amounts of C4 dicarboxylatic acids, however, these processes are suffered many weakness. In contrast, the model microorganisms harbor many advantages for C4 dicarboxylatic acids production and become focus of study at home and abroad. Recent research progress in the production of C4 dicarboxylatic acids by microbial fermentation, including production of C4 dicarboxylatic acids by natural producing microorganism and its mutants, metabolic engineering of type strain for C4 dicarboxylatic acids production, and metabolism regulation of fermentation process were reviewed. Finally, the problems to be solved and future research direction was also proposed.



Key wordsDicarboxylatic acids      Microbial fermentation      System metabolic engineering     
Received: 26 May 2014      Published: 25 August 2014
ZTFLH:  Q819  
Cite this article:

XU Guo-qiang, WU Man-zhen. A Review for Microbial Production of C4 Dicarboxylatic Acids. China Biotechnology, 2014, 34(8): 97-104.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140815     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I8/97


[1] Zelle R M, de Hulster E, van Winden W A, et al. Malic acid production by Saccharomyces cerevisiae: Engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl Environ Microb, 2008, 74 (9): 2766-2777.

[2] Sauer M, Porro D, Mattanovich D, et al. Microbial production of organic acids: expanding the markets. Trends Biotechnol, 2008, 26 (2): 100-108.

[3] 徐国强, 刘立明, 陈坚. 酿酒酵母生产羧酸的代谢工程策略. 微生物学报, 2011, 51 (12): 1571-1577. Xu G Q, Liu L M, Chen J. Metabolic engineering strategies for carboxylic acids production by Saccharomyces cerevisiae. Acta Microbiologica Sinica, 2011, 51 (12): 1571-1577.

[4] Battat E, Peleg Y, Bercovitz A, et al. Optimization of L-malic acid production by Aspergillus flavus in a stirred fermentor. Biotechnol Bioeng, 1991, 37 (11): 1108-1116.

[5] Taing O, Taing K. Production of malic and succinic acids by sugar-tolerant yeast Zygosaccharomyces rouxii. Eur Food Res Technol, 2007, 224 (3): 343-347.

[6] Xu Q, Li S, Huang H, et al. Key technologies for the industrial production of fumaric acid by fermentation. Biotechnol Adv, 2012, 30 (6): 1685-1696.

[7] Cao N, Du J, Gong C S, et al. Simultaneous production and recovery of fumaric acid from immobilized Rhizopus oryzae with a rotary biofilm contactor and an adsorption column. Appl Environ Microbiol, 1996, 62 (8): 2926-2931.

[8] Kenealy W, Zaady E, du Preez J C, et al. Biochemical aspects of fumaric acid accumulation by Rhizopus arrhizus. Appl Environ Microbiol, 1986, 52 (1): 128-133.

[9] Zhou Z, Du G, Hua Z, et al. Optimization of fumaric acid production by Rhizopus delemar based on the morphology formation. Bioresour Technol, 2011, 102 (20): 9345-9349.

[10] Gu C, Zhou Y, Liu L, et al. Production of fumaric acid by immobilized Rhizopus arrhizus on net. Bioresour Technol, 2013, 131: 303-307.

[11] Wang G, Huang D, Qi H, et al. Rational medium optimization based on comparative metabolic profiling analysis to improve fumaric acid production. Bioresour Technol, 2013, 137: 1-8.

[12] 刘嵘民, 梁丽亚, 吴明科, 等. 微生物发酵生产丁二酸. 生物工程学报, 2013, 29 (10): 1386-1397. Liu R M, Liang L Y, Wu M K, et al. Progress in microbial production of succinic acid. Chinese Journal of Biotechnology, 2013, 29 (10): 1386-1397.

[13] Guettler M V, Jain M K, Rumler D. Method for making succinic acid, bacterial variants for use in the process, and methods for obtaining variants. US, 5573931. 1996-11-12.

[14] Ye G Z, Jiang M, Li J, et al. Isolation of NH4+-tolerant mutants of Actinobacillus succinogenes for succinic acid production by continuous selection. J Microbiol Biotechnol, 2010, 20 (8): 1219-1225.

[15] Fang X J, Li J, Zheng X Y, et al. Enhancement of succinic acid production by osmotic-tolerant mutant strain of Actinobacillus succinogenes. World J Microb Biot, 2011, 27 (12): 3009-3013.

[16] d'Enfert C. Selection of multiple disruption events in Aspergillus fumigatus using the orotidine-5'-decarboxylase gene, pyrG, as a unique transformation marker. Curr Genet, 1996, 30 (1): 76-82.

[17] 周正雄. 德氏根霉产延胡索酸的发酵过程优化与羧化途径强化. 无锡:江南大学, 2012, 28-32. Zhou Z X. Enhancement of carboxylation pathway and process optimization of fumaric acid production by Rhizopus delemar. Wuxi:Jiangnan university, 2012, 28-32.

[18] Cao Y, Lin X. Metabolically engineered Escherichia coli for biotechnological production of four-carbon 1, 4-dicarboxylic acids. J Ind Microbiol Biotechnol, 2011, 38 (6): 649-656.

[19] Millard C S, Chao Y P, Liao J C, et al. Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase in Escherichia coli. Appl Environ Microbiol, 1996, 62 (5): 1808-1810.

[20] Moon S Y, Hong S H, Kim T Y, et al. Metabolic engineering of Escherichia coli for the production of malic acid. Biochem Eng J, 2008, 40 (2): 312-320.

[21] Gokarn R R, Evans J D, Walker J R, et al. The physiological effects and metabolic alterations caused by the expression of Rhizobium etli pyruvate carboxylase in Escherichia coli. Appl Microbiol Biotechnol, 2001, 56 (1-2): 188-195.

[22] Zhu J, Shimizu K. The effect of pfl gene knockout on the metabolism for optically pure D-lactate production by Escherichia coli. Appl Microbiol Biotechnol, 2004, 64 (3): 367-375.

[23] Chatterjee R, Millard C S, Champion K, et al. Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli. Appl Environ Microbiol, 2001, 67 (1): 148-154.

[24] Lin H, Bennett G N, San K Y. Genetic reconstruction of the aerobic central metabolism in Escherichia coli for the absolute aerobic production of succinate. Biotechnol Bioeng, 2005, 89 (2): 148-156.

[25] Lin H, Bennett G N, San K Y. Fed-batch culture of a metabolically engineered Escherichia coli strain designed for high-level succinate production and yield under aerobic conditions. Biotechnol Bioeng, 2005, 90 (6): 775-779.

[26] Lin H, Bennett G N, San K Y. Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield. Metab Eng, 2005, 7 (2): 116-127.

[27] Song C W, Kim D I, Choi S, et al. Metabolic engineering of Escherichia coli for the production of fumaric acid. Biotechnol Bioeng, 2013, 110 (7): 2025-2034.

[28] van Maris A J, Geertman J M, Vermeulen A, et al. Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast. Appl Environ Microbiol, 2004, 70 (1): 159-166.

[29] Drewke C, Thielen J, Ciriacy M. Ethanol formation in adh0 mutants reveals the existence of a novel acetaldehyde-reducing activity in Saccharomyces cerevisiae. J Bacteriol, 1990, 172 (7): 3909-3917.

[30] Tokuhiro K, Ishida N, Nagamori E, et al. Double mutation of the PDC1 and ADH1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene. Appl Microbiol Biot, 2009, 82 (5): 883-890.

[31] Xu G, Hua Q, Duan N, et al. Regulation of thiamine synthesis in Saccharomyces cerevisiae for improved pyruvate production. Yeast, 2012, 29 (6): 209-217.

[32] Vemuri G N, Eiteman M A, McEwen J E, et al. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A, 2007, 104 (7): 2402-2407.

[33] 赵亮亮, 汪军, 周景文, 等. 双层面调控Saccharomyces cerevisiae碳流促进L-乳酸的积累. 微生物学报, 2009, 51 (1): 50-58. Zhao L L, Wang J, Zhou J W, et al. Modification carbon flux in Saccharomyces cerevisiae to improve L-latic acid production. Acta Microbiologica Sinica, 2009, 51 (1): 50-58.

[34] Raab A M, Gebhardt G, Bolotina N, et al. Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid. Metab Eng, 2010, 12 (6): 518-525.

[35] Kaclikova E, Lachowicz T M, Gbelska Y, et al. Fumaric acid overproduction in yeast mutants deficient in fumarase. Fems Microbiol Lett, 1992, 70 (2): 101-106.

[36] Xu G Q, Zou W, Chen X L, et al. Fumaric acid production in Saccharomyces cerevisiae by in silico aided metabolic engineering. Plos One, 2012, 7 (12):e52086.

[37] Zelle R M, Trueheart J, Harrison J C, et al. Phosphoenolpyruvate carboxykinase as the sole anaplerotic enzyme in Saccharomyces cerevisiae. Appl Environ Microb, 2010, 76 (16): 5383-5389.

[38] Zelle R M, Harrison J C, Pronk J T, et al. Anaplerotic role for cytosolic malic enzyme in engineered Saccharomyces cerevisiae strains. Appl Environ Microbiol, 2011, 77 (3): 732-738.

[39] 闫道江, 王彩霞, 周杰民, 等. 酿酒酵母产苹果酸的还原TCA路径构建及发酵调控. 生物工程学报, 2013, 29 (10): 1484-1493. Yan D J, Wang C X, Zhou J M, et al. Construction and fermentation control of reductive TCA pathway for malic acid production in Saccharomyces cerevisiae strains. Chinese Journal of Biotechnology, 2013, 29 (10): 1484-1493.

[40] Xu G Q, Liu L M, Chen J. Reconstruction of cytosolic fumaric acid biosynthetic pathways in Saccharomyces cerevisiae. Microb Cell Fact, 2012, 11.

[41] Yan D, Wang C, Zhou J, et al. Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value. Bioresource Technol, 2014, 156: 232-239.

[42] Raab A M, Lang C. Oxidative versus reductive succinic acid production in the yeast Saccharomyces cerevisiae. Bioeng Bugs, 2011, 2 (2): 120-123.

[43] Xu G Q, Chen X L, Liu L M, et al. Fumaric acid production in Saccharomyces cerevisiae by simultaneous use of oxidative and reductive routes. Bioresource Technol, 2013, 148: 91-96.

[44] Zelle R M, de Hulster E, Kloezen W, et al. Key process conditions for production of C(4) dicarboxylic acids in bioreactor batch cultures of an engineered Saccharomyces cerevisiae strain. Appl Environ Microbiol, 2010, 76 (3): 744-750.

[45] Lu S, Eiteman M A, Altman E. Effect of CO2 on succinate production in dual-phase Escherichia coli fermentations. J Biotechnol, 2009, 143 (3): 213-223.

[46] 秦义, 董志姚, 刘立明, 等. 工业微生物中NADH的代谢调控. 生物工程学报, 2009, 25 (2): 161-169. Qin Y, Dong Z Y, Liu L M, et al. Manipulation of NADH metabolism in industrial microorganism. Chinese Journal of Biotechnology, 2009, 25 (2): 161-169.

[47] Li J, Jiang M, Chen K Q, et al. Effect of redox potential regulation on succinic acid production by Actinobacillus succinogenes. Bioprocess Biosyst Eng, 2010, 33 (8): 911-920.

[48] 姜岷, 黄秀梅, 李建, 等. 氧化还原电位调控对产丁二酸放线杆菌代谢通量分布的影响. 化工学报, 2009, 60 (10): 2555-2561. Jiang M, Huang X M, Li J, et al. Effect of redox potential regulation on metabolic flux distribution of succinate production by Actinobacillus succinogenes. Journal of Chemical Engineering, 2009, 60 (10): 2555-2561.

[49] Sanchez A M, Bennett G N, San K Y. Batch culture characterization and metabolic flux analysis of succinate-producing Escherichia coli strains. Metab Eng, 2006, 8 (3): 209-226.

[50] Xu N, Liu L, Zou W, et al. Reconstruction and analysis of the genome-scale metabolic network of Candida glabrata. Mol Biosyst, 2013, 9 (2): 205-216.

[51] Chen X L, Xu G Q, Xu N, et al. Metabolic engineering of Torulopsis glabrata for malate production. Metab Eng, 2013, 19: 10-16.

[1] Li-na CHENG,Hai-yan LU,Shu-ling QU,Yi-qun ZHANG,Juan-juan DING,Shao-lan ZOU. Production of Cyclic Adenosine Monophosphate (cAMP) by Microbial Fermentation——A Review[J]. China Biotechnology, 2018, 38(2): 102-108.
[2] GAO Jiao-jiao, YANG Shu-lin. Advances in the Production of High Molecular Weight Hyaluronic Acid by Microbial Fermentation[J]. China Biotechnology, 2017, 37(5): 118-125.
[3] JIA Hui-hui, LI Xiao-jing, CHEN Tao, ZHAO Xue-ming. The Research Progress of Microbial Production of L-serine and L-cysteine[J]. China Biotechnology, 2014, 34(5): 100-106.
[4] ZHAO Zhi-jun, CHEN Sheng, WU Dan, WU Jing, CHEN Jian. Metabolic Engineering of L-tryptophan via Microbiological Fermentation[J]. China Biotechnology, 2011, 31(06): 135-141.
[5] . Advance in the Production of Optically Pure D-Lactic Acid by Microbial Fermentation[J]. China Biotechnology, 2010, 30(10): 0-0.
[6] ZHOU Li, TIAN Kang-ming, CHEN Xian-zhong, ZUO Zhi-rei, SHI Gui-yang, WANG Zheng-xiang. Advance in the Production of Optically Pure D-lactic Acid by Microbial Fermentation[J]. China Biotechnology, 2010, 30(10): 114-124.