Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (4): 127-132    DOI: 10.13523/j.cb.20140419
    
Progress of Molecular Breeding in L-arginine Producing Strains
ZHANG Bin1, CHEN Jin-cong2, WAN Fang1, CHEN Min-liang2, YANG Hui-lin1, CHEN Xue-lan1
1. Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Life Science, JiangXi Normal University, Nanchang 330022, China;
2. State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
Download: HTML   PDF(550KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

L-Arginine, a semi-essential amino acid, has lately attracted considerable attention because the amino acid has been shown to be a precursor to nitric oxide (NO), a key component of endothelium-derived relaxing factor. Currently, L-arginine is primarily produced by microbial fermentation, and thus rapid and efficient breeding of arginine high-yield strains has become the focus in industry. The progress of breeding methods for arginine-producing strains was reviewed, and the current problems and perspectives on molecular breeding methods were discussed.



Key wordsL-arginine      Molecular breeding      Metabolic engineering      Genome-scale metabolic network     
Received: 19 November 2013      Published: 25 April 2014
ZTFLH:  Q812  
Cite this article:

ZHANG Bin, CHEN Jin-cong, WAN Fang, CHEN Min-liang, YANG Hui-lin, CHEN Xue-lan. Progress of Molecular Breeding in L-arginine Producing Strains. China Biotechnology, 2014, 34(4): 127-132.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140419     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I4/127


[1] Raber P, Ochoa A C, Rodríguez P C. Metabolism of L-arginine by myeloid-derived suppressor cells in cancer: mechanisms of T cell suppression and therapeutic perspectives. Immunological Investigations, 2012,41(6-7): 614-634.

[2] Gholami M, Boughton B A, Fakhari A R, et al. Metabolomic study reveals a selective accumulation of L-arginine in the d-ornithine treated tobacco cell suspension culture. Process Biochemistry, 2014,49(1): 140-147.

[3] Wu G, Bazer F W, Davis T A, et al. Arginine metabolism and nutrition in growth, health and disease. Amino Acids, 2009,37(1): 153-168.

[4] Durzan D J. Arginine, scurvy and Cartier's "The Tree of Life". Journal of Ethnobiology and Ethnomedicine, 2009,5(1): 5.

[5] Sancho-Vaello E, Fernández-Murga M L, Rubio V. Functional dissection of N-acetylglutamate synthase (ArgA) of Pseudomonas aeruginosa and restoration of its ancestral N-acetylglutamate kinase activity. Journal of Bacteriology, 2012,194(11): 2791-2801.

[6] Glansdorff N, Xu Y. Microbial arginine biosynthesis: pathway, regulation and industrial production.In:Wendisch V F. Amino Acid Biosynthesis-Pathways, Regulation and Metabolic Engineering. Heidelberg:Springer-Verlag, 2007. 219-257.

[7] Xu Y, Labedan B, Glansdorff N. Surprising arginine biosynthesis: a reappraisal of the enzymology and evolution of the pathway in microorganisms. Microbiology and Molecular Biology Reviews, 2007,71(1): 36-47.

[8] 陈雪岚, 熊勇华, 陶文沂,等. 野生型与突变型钝齿棒杆菌生物合成精氨酸基因簇arg JBDFR的生物信息学比较. 食品科学, 2007, 28(3): 219-222. Chen X L,Xiong Y H,Tao W Y,et al. Informatics comparisons of arginine biosynthetic argCJBDFR gene cluster from C.crenatum A.S 1.542 and C.crenatum A.S.M2.Food Science, 2007, 28(3): 219-222.

[9] Qu Q, Morizono H, Shi D, et al. A novel bifunctional N-acetylglutamate synthase-kinase from Xanthomonas campestris that is closely related to mammalian N-acetylglutamate synthase. BMC Biochemistry, 2007, 8(1): 4.

[10] Morizono H, Cabrera-Luque J, Shi D, et al. Acetylornithine transcarbamylase: a novel enzyme in arginine biosynthesis. Journal of Bacteriology, 2006,188(8): 2974-2982.

[11] 徐美娟. 钝齿棒杆菌 SYPA5-5 发酵产L-精氨酸的代谢工程改造. 无锡:江南大学, 2012. Xu M.Metabolic engineering of Corynebacterium crenatum SYPA5-5 for the L-arginine production. Wusi:Jiangnan University,2012.

[12] Becker J, Wittmann C. Bio-based production of chemicals, materials and fuels-Corynebacterium glutamicum as versatile cell factory. Current Opinion in Biotechnology, 2012, 23(4): 631-640.

[13] Schneider J, Niermann K, Wendisch V F. Production of the amino acids l-glutamate, l-lysine, l-ornithine and l-arginine from arabinose by recombinant Corynebacterium glutamicum. Journal of Biotechnology, 2011, 154(2-3): 191-198.

[14] 李小曼, 赵智, 张英姿, 等. γ-谷氨酰激酶基因敲除对产 L-精氨酸钝齿棒杆菌 8-193 生理代谢的影响. 微生物学报, 2011, 51(11): 1476-1484. Li X M,Zhao Z, Zhang Y Z,et al.Effect of gamma-glutamyl kinase gene knock-out on metabolism in L-arginine-producing strain Corynebacterium crenatum 8-193.Acta Microbiologica Sinica, 2011, 51(11): 1476-1484.

[15] Xu M, Rao Z, Yang J, et al. The effect of a LYSE exporter overexpression on L-arginine production in Corynebacterium crenatum. Current Microbiology, 2013, 67(3): 271-278.

[16] Xu M, Rao Z, Xu H, et al. Enhanced production of L-arginine by expression of Vitreoscilla hemoglobin using a novel expression system in Corynebacterium crenatum. Applied Biochemistry and Biotechnology, 2011,163(6): 707-719.

[17] Dou W, Xu M, Cai D, et al. Improvement of L-arginine production by overexpression of a bifunctional ornithine acetyltransferase in Corynebacterium crenatum. Applied Biochemistry and Biotechnology, 2011,165(3-4): 845-855.

[18] Xu M, Rao Z, Yang J, et al. Heterologous and homologous expression of the arginine biosynthetic argC~ H cluster from Corynebacterium crenatum for improvement of L-arginine production. Journal of Industrial Microbiology & Biotechnology, 2012, 39(3): 495-502.

[19] Xu M, Rao Z, Dou W, et al. Site-directed mutagenesis and feedback-resistant N-acetyl-L-glutamate kinase (NAGK) increase Corynebacterium crenatum L-arginine production. Amino Acids, 2012, 43(1): 255-266.

[20] Ikeda M, Mitsuhashi S, Tanaka K, et al. Reengineering of a Corynebacterium glutamicum L-arginine and L-citrulline producer. Applied and Environmental Microbiology, 2009, 75(6): 1635-1641.

[21] 陈雪岚, 汤立, 焦海涛, 等. 钝齿棒杆菌argR基因缺失株构建及其缺失对精氨酸生物合成途径相关基因转录水平的影响. 微生物学报, 2013, 1: 020. Chen X L,Tang L,Jiao H T,et al. Construction of Corynebacterium crenatum AS 1.542ΔargR and analysis of transcriptional levels of the related genes of arginine biosynthetic pathway. Acta Microbiologica Sinica, 2013,1: 020.

[22] Vold Korgaard Jensen J, Wendisch V F. Ornithine cyclodeaminase-based proline production by Corynebacterium glutamicum. Microbial Cell Factories, 2013,12(1):63.

[23] Tyo K E, Ajikumar P K, Stephanopoulos G. Stabilized gene duplication enables long-term selection-free heterologous pathway expression. Nature Biotechnology, 2009, 27(8): 760-765.

[24] Becker J, Zelder O, Hfner S, et al. From zero to hero-Design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metabolic Engineering, 2011, 13(2): 159-168.

[1] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[2] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[3] LI Yuan-yuan,LI Yan,CAO Ying-xiu,SONG Hao. Research and Strategies of Flavins-mediated Extracellular Electron Transfer[J]. China Biotechnology, 2021, 41(10): 89-99.
[4] YAN Wei-huan,HUANG Tong,HONG Jie-fang,MA Yuan-yuan. Recent Advances in Butanol Biosynthesis of Escherichia coli[J]. China Biotechnology, 2020, 40(9): 69-76.
[5] XUE Yan-ting,WU Sheng-bo,XU Cheng-yang,YUAN Bo-xin,YANG Shu-juan,LIU Jia-heng,QIAO Jian-jun,ZHU Hong-ji. Research Progress on the Quorum Sensing in the Dynamic Metabolic Regulation[J]. China Biotechnology, 2020, 40(6): 74-83.
[6] LIU Jin-cong,LIU Xue,YU Hong-jian,ZHAO Guang-rong. Recent Advances in Microbial Production of Phloretin and Its Glycosides[J]. China Biotechnology, 2020, 40(10): 76-84.
[7] Si-li YU,Xue LIU,Zhao-yu ZHANG,Hong-jian YU,Guang-rong ZHAO. Advances of Betalains Biosynthesis and Metabolic Regulation[J]. China Biotechnology, 2018, 38(8): 84-91.
[8] Li-na CHENG,Hai-yan LU,Shu-ling QU,Yi-qun ZHANG,Juan-juan DING,Shao-lan ZOU. Production of Cyclic Adenosine Monophosphate (cAMP) by Microbial Fermentation——A Review[J]. China Biotechnology, 2018, 38(2): 102-108.
[9] ZHAO Xiu-li, ZHOU Dan-dan, YAN Xiao-guang, WU Hao, CAIYIN Qing-gele, LI Yan-ni, QIAO Jian-jun. Regulation and Application in Metabolic Engineering of Bacterial Small RNAs[J]. China Biotechnology, 2017, 37(6): 97-106.
[10] YANG Yan-ping, DONG Yu, YUAN Jian-xia, XING Ying. The Analysis for Development Trend of Molecular Breeding Technologies in Rice Based on Patentometrics[J]. China Biotechnology, 2016, 36(9): 110-118.
[11] YU Xiao-chun, MA Shi-liang. Advances in Research of Aspergillus oryzae as a Host of Heterologous Protein Expression[J]. China Biotechnology, 2016, 36(9): 94-100.
[12] LI Xiao-bo, LIU Xue, ZHAO Guang-rong. Advances on Flavonoid Glycosides Production of Engineered Microorganisms[J]. China Biotechnology, 2016, 36(8): 105-112.
[13] GAO Cui-juan, LIN Carol Sze-ki, QI Qing-sheng. Production of Medium-chain-length Polyhydroxyalkanoates by Recombinant Yarrowia lipolytica Through Metabolic Engineering[J]. China Biotechnology, 2016, 36(5): 53-58.
[14] LIANG Xin-quan, LI Ning, REN Qin, LIU Ji-dong. Progress in the Metabolic Engineering of Saccharomyces cerevisiae for L-lactic Acid Production[J]. China Biotechnology, 2016, 36(2): 109-114.
[15] FANG Li xia, CAO Ying xiu, SONG Hao. Engineering Escherichia coli to Synthesize Free Fatty Acids: A Recent Progress[J]. China Biotechnology, 2016, 36(11): 90-97.