Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (4): 118-126    DOI: 10.13523/j.cb.20140418
    
The Progress on the Ubiquitin/26S Proteasome Pathway in Plants
CHEN Mo, YU Li-jie, JIN Xiao-xia, ZHU Hong, FU Chang
College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
Download: HTML   PDF(526KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Ubiquitin/26S proteasome pathway (UPP) is the most effective, highly selective proteolytic pathway. It mediates 80% to 85% of the protein degradation in eukaryotic cell, participates in various cellular life courses, and plays an important role in maintaining the normal physiological function of the cells. The results show that many aspects of plant growth and development as well as some processes such as drought stress response are all affected by this pathway. It summarizes ubiquitin/26S proteasome pathway, which roles in the processes of plant growth and development, and emphatically elaborates the progress of the plant drought stress response and its mechanism mediated by the ubiquitin-protein ligase E3.



Key wordsUbiquitin pathway      Plant growth and development      Drought stress      E3 ubiquitin ligase     
Received: 04 November 2013      Published: 25 April 2014
ZTFLH:  Q493.2  
Cite this article:

CHEN Mo, YU Li-jie, JIN Xiao-xia, ZHU Hong, FU Chang. The Progress on the Ubiquitin/26S Proteasome Pathway in Plants. China Biotechnology, 2014, 34(4): 118-126.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140418     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I4/118


[1] Stone S L,Callis J.Ubiquitin ligases mediate growth and development by promoting protein death.Current Opinion in Plant Biology,2007,10 (6): 624-632.

[2] 董合玲,徐晓阳.泛素-蛋白酶体途径的组成及其生物功能.南京体育学院学报(自然科学版),2011,10 (3): 012. Dong H L,Xu X Y.The composition of ubiquitin-proteasome pathway and its biological function.Journal of Nanjing Institute of Physical Education(Natural Science),2011,10 (3): 012.

[3] 吴慧娟,张志刚.泛素-蛋白酶体途径及意义.国际病理科学与临床杂志,2006,26(1): 7-10. Wu H J,Zhang Z G.Ubiquitin-proteasome pathway and its significance.Journal of International Pathology and Clinical Medicine,2006,26(1): 7-10.

[4] Vierstra R D.The ubiquitin-26s proteasome system at the nexus of plant biology.Nature Reviews Molecular Cell Biology,2009,10(6): 385-397.

[5] Coux O,Tanka K.Goldberg A L.Structure and function of the 20s and 26s proteasome.Annual Review of Biochemistry,1996,65(1): 801-847.

[6] Ciechanover A,Everett R,Orr A,et al.The ubiuqitni-proteasome pathway:on protein death and cell life.The EMBO Journal,1998,17(24): 7151-7160.

[7] 郭启芳,改善泛素系统提高植物逆境适应性研究.济南:山东农业大学,2007. Guo Q F,The improvement of plant acclimation to abiotic stress by ameliorating Ub/26S system.Jinan:Shandong Agriculture University,2007.

[8] Dharmasiri N,Dharmasiri S,Estelle M.The F-box protein TIR1 is an auxin receptor.Nature, 2005,435(7041): 441-445.

[9] Kepinski S,Leyser O.The Arabidopsis F-box protein TIR1 is an auxin receptor.Nature,2005,435(7041): 446-451.

[10] Gray W M,delPozo J C,Walker L,et al.Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana.Genes & Development,1999,13(13): 1678-1691.

[11] Gray W M,Kepinski S,Rouse D,et al.Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins.Nature.2001,414(6861): 271-276.

[12] Cardozo T,Pagano M.The SCF ubiquitin ligase:insights into a molecular machine.Nature Reviews Molecular Cell Biology,2004,5(9): 739-751.

[13] Ariizumi T,Steber C M.Ubiquitin becomes ubiquitous in GA signaling.Department of Crop and Soil Science,and USDA-ARS,2006.

[14] Ariizumi T,Lawrence P K,Steber C M.The role of two F-box proteins,SLEEPY1 and SNEEZY,in Arabidopsis gibberellin signaling.Plant Physiology,2011,155(2): 765-775.

[15] Ariizumi T,Steber C M,Mutations in the F-box gene SNEEZY result in decreased Arabidopsis GA signaling.Plant Signaling & Behavior,2011,6(6): 831-833.

[16] Turner J G,Ellis C,Devoto A.The jasmonate signal pathway.The Plant Cell Online, 2002, 14(suppl 1): S153-S164.

[17] Thines B,Katsir L,Melotto M,et al.JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling.Nature,2007,448(7154): 661-665.

[18] Chini A,Fonseca S,Fernandez G,et al.The JAZ family of repressors is the missing link in jasmonate signaling.Nature,2007,448(7154): 666-671.

[19] Vierstra R D.Proteolysis in plants: mechanisms and functions.Plant Molecular Biology, 1996,32(1-2): 275-302.

[20] An F,Zhao Q,Ji Y,et al.Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis.The Plant Cell Online,2010,22(7): 2384-2401.

[21] Zhu Z,An F,Feng Y,et al.Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis.Proceedings of the National Academy of Sciences,2011,108(30): 12539-12544.

[22] Chao Q,Rothenberg M,Solano R,et al. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins.Cell,1997,89(7): 1133-1144.

[23] Guo H,Ecker J R. Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor.Cell,2003,115(6): 667-677.

[24] Potuschak T,Lechner E,Parmentier Y,et al.EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F Box proteins: EBF1 and EBF2.Cell,2003,115(6): 679-689.

[25] Li H M, Jiang H L,Bu Q Y,et al.The Arabidopsis RING finger E3 ligase RHA2b acts additively with RHA2a in regulating abscisic acid signaling and drought response.Plant Physiology,2011,156(2): 550-563.

[26] Murray A.Cyclin ubiquitination: the destructive end of mitosis.Cell,1995,81(2): 149-152.

[27] Szarka S,Fitch M,Schaerer S,et al.Classification and expressian of a family of cyclingene homologues in Brassica napus.Plant Molecular Biology, 1995,27(2): 263-275.

[28] Ren H,Santner A,Del Pozo J C,et al.Degradation of the cyclin-dependent kinase inhibitor KRP1 is regulated by two different ubiquitin E3 ligases.Plant,2008,53(5): 705-716.

[29] Courtney S E,Rider C C,Stead A D.Changes in protein ubiquitination and the expression of ubiquitin-encoding transcripts in daylily petals during floral development and senescence.Physiologia Plantarum,1994,91(2): 196-204.

[30] Woo H R,Chung K M,Park J H,et al.ORE9,an F-box protein that regulates leaf senescence in Arabidopsis.The Plant Cell Online,2001,13(8): 1779-1790.

[31] Kim M,Ahn J W,Jin U H,et al.Activation of the programmed cell death pathway by inhibition of proteasome function in plants.Journal of Biological Chemistry,2003,278(21): 19406-19415.

[32] Woffenden B J,Freeman T B,Beers E P.Proteasome inhibitors prevent tracheary element differentiation in zinnia mesophyll cell cultures.Plant Physiology,1998,118(2): 419-430.

[33] Samach A,Klenz J E,Kohalmi S E,et al.The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem.The Plant Journal,1999,20(4): 433-445.

[34] Zhao D,Yu Q,Chen M,et al.The ASK1 gene regulates B function gene expression in cooperation with UFO and LEAFY in Arabidopsis.Development,2001,128(14): 2735-2746.

[35] 盛仙永.泛素/蛋白酶体途径在青扦花粉萌发及花粉管生长过程中的作用.西安:西北大学,2006. Sheng X Y.Roles of the ubiquitin/proteasome pathway in picea wilsonii pollen germination and the tube growth.Xian:Northwest University,2006.

[36] 董发才,宋纯鹏.植物细胞中的泛素及其生理功能.植物生理学通讯,1999,35(1): 54-59. Dong F C,Song C P.The ubiquitin and its physiological functions in plants.Plant Physiology Communication,1999,35(1): 54-59.

[37] Marrocco K,Zhou Y, Bury E,et al.Functional analysis of EID1,an F-box protein involved in phytochrome A2 dependent light signal transduction.The Plant Journal, 2006,45 (3): 423-438.

[38] Hardtke C S,Gohda K,Osterlund M T,et al.HY5 stability and activity in Arabidopsis is regulated by phosphorylation in its COP1 binding domain.The EMBO journal,2000,19(18): 4997-5006.

[39] Holm M,Ma LG,Qu L J,et al.Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis.Genes & Development,2002,16(10): 1247-1259.

[40] Osterlund M T,Hardtke C S,Wei N,et al.Targeted destabilization of HY5 during light-regulated development of Arabidopsis.Nature, 2000,405(6785): 462-466.

[41] Seo H S,Yang J Y,Ishikawa M,et al.LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1.Nature,2003,423(6943): 995-999.

[42] De Nettancourt D.Incompatibility in angiosperms.Sexual Plant Reproduction,1997,10(4): 185-199.

[43] Ushijima K,Sassa H,Dandekar A M,et al.Structural and transcriptional analysis of the self-incompatibility locus of almond: identification of a pollen-expressed F-box gene with haplotype-specific polymorphism.The Plant Cell Online,2003,15(3): 771-781.

[44] Yamane H,Ikeda K,UshUima K,et al.A pollen-expressed gene for a novel protein with an F-box motif that is very tightly linked to a gene for S-RNase in two species of cherry,Prunus cerasus and P. avium.Plant and Cell Physiology,2003,44(7): 764-769.

[45] Entani T,Takayama S,Iwano M,et al.Relationship between polyploidy and pollen self-incompatibility phenotype in Petunia hybrids Vilm.Bioscience,Biotechnology,and Biochemistry,1999,63(11): 1882-1888.

[46] Wang Y,Wang X,Skirpan A L,et al.S-RNase-mediated self-incompatibility.Journal of Experimental Botany,2003,54(380): 115-122.

[47] Wang L,Dong L,Zhang Y E,et al.Genome-wide analysis of S-locus F-box-like genes in Arabidopsis thaliana.Plant Molecular Biology,2004,56: 929-945.

[48] Sijacic P,Wang X,Skirpan A L,et al. Identification of the pollen determinant of S-RNase-mediated self-incompatibility.Nature,2004,429(6989): 302-305.

[49] Qiao H,Wang H, Zhao L,et al.The F-box protein AhSLF-S2 physically interacts with S-RNases that may be inhibited by the ubiquitin/26S proteasome pathway of protein degradation during compatible pollination in Antirrhinum.The Plant Cell Online,2004,16(3): 582-595.

[50] Qiao H,Wang F,Zhao L,et al.The F-box protein AhSLF-S2 controls the pollen function of S-RNase-based self-incompatibility.The Plant Cell Online,2004,16(9): 2307-2322.

[51] Lai Z,Ma W,Han B,et al.An F-box gene linked to the self-incompatibility (S) locus of Antirrhinum is expressed specifically in pollen and tapetum.Plant Molecular Biology,2002,50(1): 29-42.

[52] 于晓敏,蓝兴国,李玉花.泛素/26S蛋白酶体途径与显花植物自交不亲和反应.植物学通报, 2006,23 (2): 197-206. Yu X M,Lan X G,Li Y H.The Ub/26S proteasome and sef-incompatible responses in flowering plants.Chinese Bulletin of Botany,2006,23(2): 197-206.

[53] Bedinger P A,Edgerton M D.Developmental staging of maize microspores reveals a transition in developing microspore proteins.Plant Physiology,1990,92(2): 474-479.

[54] Scoccianti V,Speranza A,Crinelli R,et al.Protein targeting by ubiquitin during anther and pollen development in male and female flowers of Kiwifruit (Actinidia deliciosa).In: Clement C, Pacini E, Audran J C.Anther and Pollen.Berlin:Sperlinger-Verlag, 1999.45-53.

[55] Callis J,Bedinger P.Developmentally regulated loss of ubiquitin and ubiquitinated proteins during pollen maturation in maize.Proceedings of the National Academy of Sciences,1994,91(13): 6074-6077.

[56] Kulikauskas R,Hou A,Muschietti J,et al.Comparisons of diverse plant species reveal that only grasses show drastically reduced levels of ubiquitin monomer in mature pollen.Sexual Plant Reproduction,1995,8(6): 326-332.

[57] Li Y Q, Southworth D,Linskens H F,et al.Localization of ubiquitin in anthers and pistils of Nicotiana.Sexual Plant Reproduction,1995,8(3): 123-128.

[58] Alché J D,Butowt R,Castro A J,et al.Ubiquitin and ubiquitin-conjugated proteins in the olive (Olea europaea l.) pollen.Sexual Plant Reproduction,2000,12(5): 285-291.

[59] Shinozaki K,Yamaguchi-Shinozaki K.Gene networks involved in drought stress response and tolerance.Journal of Experimental Botany,2007,58(2): 221-227.

[60] Ahuja I,de Vos R C H,Bones A M,et al.Plant molecular stress responses face climate change.Trends in Plant Science,2010,15(12): 664-674.

[61] Lee J H,Kim W T.Regulation of abiotic stress signal transduction by E3 ubiquitin ligases in Arabidopsis.Molecules and Cells,2011,31(3): 201-208.

[62] Catala R,Ouyang J,Abreu I A,et al.The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses.The Plant Cell Online,2007,19(9): 2952-2966.

[63] Zeba N,Isbat M,Kwon N J,et al.Heat-inducible C3HC4 type RING zinc finger protein gene from Capsicum annuum enhances growth of transgenic tobacco.Planta,2009,229(4): 861-871.

[64] 吴建民.拟南芥泛素连接酶SRAR1的功能研究.兰州:兰州大学,2009. Wu J M.Functional characteristics on E3 ubiquitin ligase SRARI in Arabidopsis.Lanzhou:Lanzhou University,2009.

[65] Cho S K,Ryu M Y,Seo D H,et al.The Arabidopsis RING E3 ubiquitin ligase AtAIRP2 plays combinatory roles with AtAIRP1 in abscisic acid-mediated drought stress responses.Plant Physiology,2011,157(4): 2240-2257.

[66] 李彦泽.拟南芥F-box基因AtPP2-B11的功能分析及苹果RING finger型泛素连接酶E3的家族分析.济南:山东农业大学,2011. Li Y Z.Functional characterization of F-box-containing gene Atpp2-B11 and genome analysis of the RING finger proteins in apple.Jinan:Shangdong Agricultural University,2011.

[67] Ning Y,Jantasuriyarat C,Zhao Q,et al.The SINA E3 ligase OsDIS1 negatively regulates drought response in rice.Plant Physiology,2011,157(1): 242-255.

[68] Seo Y S,Choi J Y,Kim S J,et al.Constitutive expression of CaRma1H1 ,a hot pepper ER-localized RING E3 ubiquitin ligase,increases tolerance to drought and salt stresses in transgenic tomato plants.Plant Cell Reports,2012,31(9): 1659-1665.

[69] Cheng M C,Hsieh E J,Chen J H,et al.Arabidopsis RGLG2, functioning as a RING E3 ligase, interacts with AtERF53 and negatively regulates the plant drought stress response.Plant Physiology,2012,158(1): 363-375.

[70] Kim S J,Ryu M Y,Kim W T.Suppression of Arabidopsis RING-DUF1117 E3 ubiquitin ligases,AtRDUF1 and AtRDUF2, reduces tolerance to ABA-mediated drought stress.Biochemical and Biophysical Research Communications,2012,420(1): 141-147.

[71] Xia Z L,Liu Q,Wu J,et al.ZmRFP1,the putative ortholog of SDIR1,encodes a RING-H2 E3 ubiquitin ligase and responds to drought stress in an ABA-dependent manner in maize.Gene,2012,495(2): 146-153.

[72] Zhang Y,Yang C,Li Y,et al.SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis.The Plant Cell Online,2007,19(6): 1912-1929.

[73] Liu Y C,Wu Y R,Huang X H,et al.AtPUB19,a U-Box E3 ubiquitin ligase,negatively regulates abscisic acid and drought responses in Arabidopsis thaliana.Molecular Plant,2011,4(6): 938-946.

[74] Seo D H,Ryu M Y,Jammes F,et al.Roles of four Arabidopsis U-box E3 ubiquitin ligases in negative regulation of ABA-mediated drought stress responses.Plant Physiology, 2012,160: 556-568.

[75] Xia Z L,Su X,Liu J,et al.The RING-H2 finger gene 1 ( RHF1 ) encodes an E3 ubiquitin ligase and participates in drought stress response in Nicotiana tabacum. Genetica,2013,141,11-21.

[76] 刘方方,姜涛.玉米中 RING 型 E3 泛素连接酶基因 ZmGW2 的表达分析.玉米科学 2013,21(2) : 47-51. Liu F F,Jiang T.Expression pattern assay of ZmGW2 ,a RING-domain E3 ubiqutin ligase gene in Maize.Journal of Maize Sciences,2013,21(2):47-51.

[77] Kim J H,Kim W T.The Arabidopsis RING E3 ubiquitin ligase AtAIRP3/LOG2 participates in positive regulation of high salt and drought stress responses.Plant Physiology,2013,21,3.

[78] 谭永聪,王启军,赵国屏,等.原核生物的蛋白质翻译后修饰.生物化学与生物物理进展,2011,38(3): 197-203. Tan Y C,Wang Q J,Zhao G P,et al.Protein post-translation modification in prokayotes.Progress in Biochemistry and Biophysics,2011,38(3): 197-203.

[79] 郭会灿.蛋白质翻译后修饰研究进展.生物技术通报,2011,7: 005. Guo H C.Research progress of protein translational modifications.Biotechnology Bulletion,2011,7: 005.

[1] ZHANG Li-li, XU Bi-yu, LIU Ju-hua, JIA Cai-hong, ZHANG Jian-bin, JIN Zhi-qiang. Analysis of Banana MaASR1 Gene Expression Profiles in Arabidopsis Under Drought Stress[J]. China Biotechnology, 2017, 37(11): 59-73.
[2] NIE Li-zhen, YU Xiao-xia, LI Guo-jing, SUN Jie, JIANG Chao, YU Zhuo. Study on Transgenic Potato Contained AtCDPK1 Gene Drived by Rd29A Promoter[J]. China Biotechnology, 2015, 35(11): 13-22.