Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (2): 109-117    DOI: 10.13523/j.cb.20140218
    
Application Progress of Kluyveromyces marxianus in the Industrial Biotechnology
GAO Jiao-qi, HAN Xi-tong, KONG Liang, YUAN Wen-jie, WANG Na, BAI Feng-wu
School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116023, China
Download: HTML   PDF(457KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Kluyveromyces marxianus is a kind of "non-conventional" yeasts that have been studied widely. For its advantages of high temperature resistance, rapid growth and the capacity to utilize various substrates, there are increasing applications in the industrial biotechnology. K. marxianus is able to produce kinds of hydrolase, such as inulinase and β-galactosidase etc. And ethanol can also be achieved by K. marxianus from inulin, wheey, molasses, xylose and so on. Some advances have also been made in the molecular biology research of K. marxianus. Conseqeuntly, some significant research progresses in applications of enzyme secretion, ethanol fermentation, heterologous proteins production by K. marxianus in recent years were reviewed to facilitate further applications of K. marxianus in the industrial biotechnology.

Key wordsKluyveromyces marxianus      Industrial biotechnology      Enzyme secretion      Ethanol fermentation     
Received: 04 November 2013      Published: 25 February 2014
ZTFLH:  Q939.9  
Cite this article:

GAO Jiao-qi, HAN Xi-tong, KONG Liang, YUAN Wen-jie, WANG Na, BAI Feng-wu. Application Progress of Kluyveromyces marxianus in the Industrial Biotechnology. China Biotechnology, 2014, 34(2): 109-117.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140218     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I2/109

[1] Lane M M, Morrissey J P. Kluyveromyces marxianus: A yeast emerging from its sister's shadow. Fungal Biology Reviews, 2010, 24 (1-2): 17-26.
[2] Fonseca G G, Heinzle E, Wittmann C, et al. The yeast Kluyveromyces marxianus and its biotechnological potential. Applied Microbiology and Biotechnology, 2008, 79(3): 339-354.
[3] Hong Jiong, Wang Yong-hong, Kumagai H, et al. Construction of thermotolerant yeast expressing thermostable cellulase genes. Journal of Biotechnology, 2007, 130(2): 114-123.
[4] Bansa S, Oberoi H S, Dhillon G S, et al. Production of β-galactosidase by Kluyveromyces marxianus MTCC 1388 using whey and effect of four different methods of enzyme extraction on β-galactosidase activity. Indian Journal of Microbiology, 2008, 48(3): 337-341.
[5] Rajoka M I, Latif F, Khan S, et al. Kinetics of improved productivity of β-galactosidase by acycloheximide-resistant mutant of Kluyveromyces marxianus. Biotechnology Letters, 2004, 26(9):741-746.
[6] Dilipkumar M, Rajasimman M, Rajamohan N. Optimization of inulinase production using copra waste by K. marxianus var. Chemical Industry and Chemical Engineering Quarterly, 2010, 16(4): 319-327.
[7] Zhou H X, Xu J L, Chi Z, et al. β-galactosidase over-production by a mig1 mutant of Kluyveromyces marxianus KM for efficient hydrolysis of lactose. Biochemical Engineering Journal, 2013, 76(15): 17-24.
[8] Schneider A L S, Merkle R, Carvalho-Jonas M F, et al. Oxygen transfer on β-D-galactosidase production by Kluyveromyces marxianus using sugar cane molasses as carbon source. Biotechnology Letters, 2001, 23(7): 547-550.
[9] Rollini M, Trinetta V, Musatti A, et al. Influence of substrate on β-galactosidase production by Kluyveromyces strains. Annals of Microbiology, 2008, 58 (4): 705-710.
[10] Furlan S A, Schneider A L S, Merkle R, et al. Formulation of a lactose-free, low-cost culture medium for the production of β-D-galactosidase by Kluyveromyces marxianus. Biotechnology Letters, 2000, 22(7): 589-593.
[11] O'Connell S, Walsh G. Purification and properties of a β-Galactosidase with potential application as a digestive supplement. Applied Biochemistry and Biotechnology, 2007, 141(1): 1-13.
[12] Braga A R C, Gomes P A, Kalil S J. Formulation of culture medium with agroindustrial waste for β-galactosidase production from Kluyveromyces marxianus ATCC 16045. Food and Bioprocess Technology, 2011, 5(5): 1653-1663.
[13] Singh R S, Saini G K. Production of inulinase from raw Dahlia inulin by Kluyveromyces marxianus YS-1. Journal of Scientific & Industrial Research, 2013, 72(9-10): 603-610.
[14] Kalil S J, Suzan R, Maugeri F, et al. Optimization of inulinase production by Kluyveromyces marxianus using factorial design. Applied Biochemistry and Biotechnology, 2001, 94(3): 257-264.
[15] Singh R S, Bhermi H K. Production of extracellular exoinulinase from Kluyveromyces marxianus YS-1 using root tubers of Asparagus officinalis. Bioresource Technology, 2008, 99(15): 7418-7423.
[16] Mazutti M A, Zabot G, Boni G, et al. Kinetics of inulinase production by solid-state fermentation in a packed-bed bioreactor. Food Chemistry, 2010, 120(1): 163-173.
[17] Vijayaraghavan K, Yamini D, Ambika V, et al. Trends in inulinase production: a review. Critical Reviews in Biotechnology, 2009, 29(1): 67-77.
[18] Chi Z M, Chi Z, Zhang T, et al. Production, characterization and gene cloning of the extracellular enzymes from the marine-derived yeasts and their potential applications. Biotechnology Advances, 2009, 27(3): 236-255.
[19] 谢忠, 王世媛, 魏文铃. 克鲁维酵母(Kluyveromyces SP.)Y-85菊粉酶生物合成的调控. 食品工业科技,2004, 25(1): 100-102. Xie Z, Wang S Y,Wei W L. Regulation of the inulinase bio-production by Kluyveromyces SP. Y-85. Science and Technology of Food Industry, 2004, 25(1): 100-102.
[20] Wei W L, Wang S Y, Zhun X S, et al. Isolation of a mutant of Kluyveromyces sp. Y-85 resistant to catabolite repression. Journal of Bioscience and Bioengineering, 1999, 87(6): 816-818.
[21] Yuan X L, Goosen C, Kools H, et a1. Database mining and transcriptional analysis of genes encoding inulin-modifying enzymes of Aspergillus niger. Micobiology, 2006, 152(10): 3061-3073.
[22] Yuan X L,Roubos J A,van den Hondel, et a1. Identification of InuR, a new zn(II)2cys6 transcriptional activator involved in the regulation of inulinolytic genes in Aspergillus niger. Mol Genet Genomics, 2008, 279(1): 11-26.
[23] Silva-Santisteban B O, Converti A, Filho F M. Effects of carbon and nitrogen sources and oxygenation on the production of inulinase by Kluyveromyces marxianus. Applied Biochemistry and Biotechnology, 2009, 152(2): 249-261.
[24] Silva-Santisteban B O, Filho F M. Agitation, aeration and shear stress as key factors in inulinase production by Kluyveromyces marxianus. Enzyme and Microbial Technology, 2005, 36(5-6): 717-724.
[25] Gao J Q, Chen L J, Yuan W J. Effects of carbon sources, oxygenation and ethanol on the production of inulinase by Kluyveromyces marxianus YX01. Journal of BioScience and Biotechnology, 2012, 1(2): 155-161.
[26] Schwan R F, Rose A H. Polygalacturonase production by Kluyveromyces marxianus: effect of medium composition. Journal of Applied Bacteriology, 1994, 76(1): 62-67.
[27] Serrat M, Bermudez R C, Villa T G. Production, purification, and characterization of a polygalacturonase from a new strain of Kluyveromyces marxianus isolated from coffee wet-processing wastewater. Applied Biochemistry and Biotechnology, 2002, 97(3): 193-207.
[28] Cruz-Guerrero A, Barzana E, Garcia-Garibay M, et al. Dissolved oxygen threshold for the repression of endo-polygalacturonase production by Kluyveromyces marxianus. Process Biochemistry, 2009, 34(6-7): 621-624.
[29] Serrat M, Bermudez R C, Villa T G. Polygalacturonase and ethanol production in Kluyveromyces marxianus. Applied Biochemistry and Biotechnology, 2004, 117(1): 49-64.
[30] Deive F J, Costas M, Longo M A. Production of a thermostable extracellular lipase by Kluyveromyces marxianus. Biotechnology Letters, 2003, 25(17): 1403-1406.
[31] Rocha S N, Abrah o-Neto J, Cerdán M E, et al. Heterologous expression of a thermophilic esterase in Kluyveromyces yeasts. Applied Microbiology and Biotechnology, 2010, 89(2): 375-385.
[32] Rajoka M I, Khan S, Latif F, et al. Influence of carbon and nitrogen sources and temperature on hyperproduction of a thermotolerant β-glucosidase from synthetic medium by Kluyveromyces marxianus. Applied Biochemistry and Biotechnology, 2004, 117(2): 76-92.
[33] Rajoka M I. Kinetic parameters and thermodynamic values of β-xylosidase production by Kluyveromyces marxianus. Bioresource Technology, 2007, 98(11): 2212-2219.
[34] Dellomonaco C, Amaretti A, Zanoni S, et al. Fermentative production of superoxide dismutase with Kluyveromyces marxianus. Journal of Industrial Microbiology and Biotechnology, 2007, 34(1):27-34.
[35] Simental-Martínez J, Vennapusa R R, Benavides J, et al. A novel process for the recovery of superoxide dismutase from yeast exploiting electroextraction coupled to direct sorption. Journal of Chemical Technology and Biotechnology, 2013, 88(8): 1498-1505.
[36] Ramirez-Zavala B, Mercado-Flores Y, Hernandez-Rodriguez C, et al. Purification and characterization of a lysine aminopeptidase from Kluyveromyces marxianus. FEMS Microbiology Letters, 2004, 234(2): 247-253.
[37] Yuan W J, Zhao X Q, Ge X M, et al. Ethanol fermentation with Kluyveromyces marxianus from Jerusalem artichoke grown in salina and irrigated with a mixture of seawater and freshwater. Journal of Applied Microbiology, 2008, 105(6): 2076-2083.
[38] Kim S, Park J M, Kim C H. Ethanol production using whole plant biomass of Jerusalem Artichoke by Kluyveromyces marxianus CBS1555. Applied biochemistry and biotechnology, 2013, 169(5): 1-15.
[39] Yuan W J, Chang B L, Ren J G, et al. Consolidated bioprocessing strategy for ethanol production from Jerusalem artichoke tubers by Kluyveromyces marxianus under high gravity conditions. Journal of Applied Microbiology, 2012, 112(1): 38-44.
[40] 杨梅,袁文杰,凤丽华. 菊芋生料联合生物加工发酵生产燃料乙醇. 安徽农业科学, 2012, 40(9): 5438-5441. Yang M, Yuan W J, Feng L H. Production of fuel ethanol from uncooked Helianthus tuberosus by consolidated bioprocessing (CBP) fermentation. Journal of Anhui Agricultural Science, 2012, 40(9): 5438-5441.
[41] 杨梅,袁文杰. 搅拌桨对菊芋联合生物加工发酵生产燃料乙醇的影响. 吉林化工学院学报, 2012, 29(1): 71-75. Yang M, Yuan W J. Effect of different impellers on fuel ethanol production from uncooked Jerusalem artichoke by consolidated bio-processing fermentation. Journal of Jilin Institute Chemistry Technology, 2012, 29(1): 71-75.
[42] Bajpai P, Margaritis A. Kinetics of ethanol production by immobilized Kluyveromyces marxianus cells at varying sugar concentrations of Jerusalem artichoke juice. Applied Microbiology and Biotechnology, 1987, 26(5): 447-449.
[43] Negro M J, Ballesteros I, Manzanares P, et al. Inulin-containing biomass for ethanol production. Applied Biochemistry and Biotechnology, 2006, 132(1-3): 922-931.
[44] Silveira W B, Passos F, Mantovani H C, et al. Ethanol production from cheese whey permeate by Kluyveromyces marxianus UFV-3: a flux analysis of oxido-reductive metabolism as a function of lactose concentration and oxygen levels. Enzyme and Microbial Technology, 2005, 36(7): 930-936.
[45] Oda Y, Nakamura K, Shinomiya N, et al. Ethanol fermentation of sugar beet thick juice diluted with crude cheese whey by the flex yeast Kluyveromyces marxianus KD-15. Biomass Bioenergy, 2010, 34(8): 1263-1266.
[46] Diniz R H, Rodrigues M Q, Fietto L G, et al. Optimizing and validating the production of ethanol from cheese whey permeate by Kluyveromyces marxianus UFV-3. Biocatalysis and Agricultural Biotechnology, 2013. http://dx.doi.org/10.1016/j.bcab.2013.09.002.
[47] Kargi F, Ozmihci S. Utilization of cheese whey powder (CWP) for ethanol fermentations: effects of operating parameters. Enzyme and Microbial Technology, 2006, 38(5): 711-718.
[48] Guo X W, Zhou J, Xiao D G. Improved ethanol production by mixed immobilized cells of Kluyveromyces marxianus and Saccharomyces cerevisiae from cheese whey powder solution fermentation. Applied Biochemistry and Biotechnology, 2010, 160(2): 532-538.
[49] Gough S, McHale A P. Continuous ethanol production from molasses at 45°C using alginate-immobilized Kluyveromyces marxianus IMB3 in a continuous-flow bioreactor. Bioprocess Engineering, 1998, 19(1): 33-36.
[50] Aziz S, Memon H R, Shah F A, et al. Production of ethanol by indigenous wild and mutant strain of thermotolerant Kluyveromyces marxianus under optimized fermentation conditions. Pak J Anal Environ Chem, 2009, 10(1): 25-33.
[51] Aziz S, Shah F A, Memon H R, et al. Hyper production of ethanol from cane molasses at optimized agitational intensity using indigenous thermotolerant Kluyveromyces marxianus. Australian Journal of Basic and Applied Sciences, 2011, 5(3): 750-754.
[52] Ballesteros M, Oliva J M, Negro M J, et al. Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochemistry, 2004, 39(12): 1843-1848.
[53] Tomas-Pejo E, Oliva J M, González A, et al. Bioethanol production from wheat straw by the thermotolerant yeast Kluyveromyces marxianus CECT 10875 in a simultaneous saccharification and fermentation fed-batch process. Fuel, 2009, 88(11): 2142-2147.
[54] Yanase S, Hasunuma T, Yamada R, et al. Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes. Applied Microbiology and Biotechnology, 2010, 88(1-2): 381-388.
[55] Goshima T, Tsuji M, Inoue H, et al. Bioethanol production from lignocellulosic biomass by a novel Kluyveromyces marxianus strain. Bioscience, Biotechnology, and Biochemistry, 2013, 77(7): 1505-1510.
[56] Zhang B, Li L, Zhang J, et al. Improving ethanol and xylitol fermentation at elevated temperature through substitution of xylose reductase in Kluyveromyces marxianus. Journal of Industrial Microbiology & Biotechnology, 2013, 40(3-4): 305-316.
[57] Wilkins M R, Mueller M, Eichling S, et al. Fermentation of xylose by the thermotolerant yeast strains Kluyveromyces marxianus IMB2, IMB4, and IMB5 under anaerobic conditions. Process Biochemistry, 2008, 43(4): 346-350.
[58] Goshima T, Negi K, Tsuji M, et al. Ethanol fermentation from xylose by metabolically engineered strains of Kluyveromyces marxianus. Journal of Bioscience and Bioengineering, 2013, 116(5): 551-554.
[59] Limtong S, Sringiew C, Yongmanitchai W. Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. Bioresource Technology, 2007, 98(7): 3367-3374.
[60] Rodrussamee N, Lertwattanasakul N, Hirata K, et al. Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromyces marxianus Applied Microbiology and Biotechnology, 2011, 90(4): 1573-1586.
[61] 张田. 利用毕赤酵母表达小C肽人胰岛素原的研究. 上海:上海交通大学,2008. Zhang T. Study on expression of "Mini C" human proinsulin in Pichia pastoris. Shanghai: Shanghai Jiaotong University, 2008.
[62] 付若彬. 重组猪生长激素在毕赤酵母中的表达及其生物活性研究. 四川:四川大学,2006. Fu R B. Ekuayrn expression of the recombinant pGH in Picihia pasotrsi and its bioactivity study. Sichuan: Sichuan University, 2006.
[63] Das S, Kellermann E, Hollenberg C P. Transformation of Kluyveromyces fragilis. Journal of Bacteriology, 1984, 158(3): 1165-1167.
[64] Falcone C, Saliola M, Chen X J, et al. Analysis of a 1.6-micron circular plasmid from the yeast Kluyveromyces drosophilarum: structure and molecular dimorphism. Plasmid, 1986, 15(3): 248-252.
[65] Antunes D F, Junior C G, Junior M A, et al. A simple and rapid method for lithium acetate-mediated transformation of Kluyveromyces marxianus cells. World Journal of Microbiology and Biotechnology, 2000, 16(7): 653-654.
[66] Basabe L, Cabrera N, Yong V, et al. Isolation and characterization of mutants as an approach to a transformation system in Kluyveromyces marxianus. Current Genetics, 1996, 30(1): 89-92.
[67] Iborra F. High efficiency transformation of Kluyveromyces marxianus by a replicative plasmid. Current Genetics, 1993, 24(1-2): 181-183.
[68] Rocha S N, Abrahao-Neto J, Cerdan M E, et al. Heterologous expression of glucose oxidase in the yeast Kluyveromyces marxianus. Microbial Cell Factories, 2010, 9(1): 4.
[69] Bergkamp R J, Bootsman T C, Toschka H Y, et al. Expression of an α-galactosidase gene under control of the homologous inulinase promoter in Kluyveromyces marxianus. Applied Microbiology and Biotechnology, 1993, 40(2-3): 309-317.
[70] Pecota D C, Silva N A. Evaluation of the tetracycline promoter system for regulated gene expression in Kluyveromyces marxianus. Biotechnology and Bioengineering, 2005, 92(1): 117-123.
[71] Nonklang S, Ano A, Abdel-Banat B M, et al. Construction of flocculent Kluyveromyces marxianus strains suitable for high-temperature ethanol fermentation. Bioscience Biotechnology and Biochemistry, 2009, 73(5): 1-6.
[72] Lee K S, Kim J S, Heo P, et al. Characterization of Saccharomyces cerevisiae promoters for heterologous gene expression in Kluyveromyces marxianus. Applied Microbiology and Biotechnology, 2012, DOI 10.1007/s00253-012-4306-4307.
[73] Heo P, Yang T J, Chung S C, et al. Simultaneous integration of multiple genes into the Kluyveromyces marxianus chromosome. Journal of Biotechnology, 2013, 167(3): 323-325.
[1] SONG Yi-mei,JIA Xiu-wei,LI Shu-biao,GAO Cui-juan. Industrial Microorganism of Yarrowia lipolytica and Its Industrial Amplicaiton[J]. China Biotechnology, 2020, 40(9): 77-86.
[2] CHEN Fang, DING Chen-jun, CHEN Yun-wei, ZHENG Ying, DENG Yong, XU Ping, YU Jian-rong, WU Lin-huan, MA Jun-cai, ZENG Yan, LIU Bin. A Study on the Trend and Prospective of Industrial Biotechnology in China[J]. China Biotechnology, 2016, 36(5): 1-11.
[3] SHEN Dong-ling, SHANG Shu-mei, LI Wei-na, YAN Jin-ping, HANGAN Ir-bis. Characterization of the Disrupted ack Genes on Fermentation by Thermoanaerobacterium calidifontis Rx1[J]. China Biotechnology, 2015, 35(7): 37-44.
[4] ZI Li-han, LIU Chen-guang, WANG Na, YUAN Wen-jie, BAI Feng-wu. Very High Gravity Ethanol Production Under Different Aeration Schemes[J]. China Biotechnology, 2013, 33(6): 86-92.
[5] SUN Huan-min, GUO Min, IRBIS Cha-gan. Effects of Intracellular Redox Level on Fermentation Metabolism of Thermoanaerobacter ethanolicus[J]. China Biotechnology, 2012, 32(07): 73-78.
[6] ZHANG Xiao-yang, DU Feng-guang, CHI Xiao-qin, WANG Pin-mei, ZHENG Dao-qiong, WU Xue-chang. Construction of Saccharomyces cerevisiae Strains Improved Stress Tolerance and Ethanol Fermentation Performance through Metabolic Engineering and Genome Recombination[J]. China Biotechnology, 2011, 31(7): 91-97.
[7] LI Ji, LI Fan, LIU Chen-Guang, LIN Jian-Gang, DIAO Xin-Qing, GE Xu-Meng, BAI Feng-Wu. Breeding of Yeast Fusant for Efficient Ethanol Fermentation from Xylose[J]. China Biotechnology, 2009, 29(06): 74-78.
[8] . Analysis of carbon metabolic effluence on ethanol fermentation by Pichia stipitis[J]. China Biotechnology, 2007, 27(10): 64-69.