Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (4): 78-83    DOI: 10.13523/j.cb.1910045
    
Interaction between Protein Corona and Nanoparticles
CHU Yu-qi,LU Fei-fei,LIU Yang,HE Fang,WANG Da-zhuang,CHEN Li-jiang()
School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
Download: HTML   PDF(507KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In recent years, although nanoparticles have made great progress in biomedical research, they rarely enter clinical trials. This is mainly due to the lack of understanding of the interaction between nanoparticles and the physiological environment and the limited understanding of the biological characteristics of nanoparticles after they enter the body. In the physiological environment, proteins adsorb on the surface of nanoparticles and form protein corona. The formation of this nanoparticles-protein corona complex seriously affects the biological characteristics of nanoparticles and restricts the clinical application of nanoparticles. Therefore, the interaction between protein corona and nanoparticles should be further studied. At present, the research on nanoparticle-protein corona complex is a relatively new field. This review summarizes the research status of protein corona, and focuses on the impact of the interaction between protein corona and nanoparticles. It also introduces methods to prevent and reduce the formation of protein corona, providing ideas for further research and development of nanoparticles.



Key wordsProtein corona      Nanoparticles      Interaction     
Received: 25 October 2019      Published: 18 May 2020
ZTFLH:  Q513  
Corresponding Authors: Li-jiang CHEN     E-mail: chlj16@163.com
Cite this article:

CHU Yu-qi,LU Fei-fei,LIU Yang,HE Fang,WANG Da-zhuang,CHEN Li-jiang. Interaction between Protein Corona and Nanoparticles. China Biotechnology, 2020, 40(4): 78-83.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.1910045     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I4/78

Fig.1 The formation of protein corona and “Vroman” effect
[1]   Lin W . Introduction: nanoparticles in medicine. Chemical Reviews, 2015,115(19):10407-10409.
doi: 10.1021/acs.chemrev.5b00534 pmid: 26463639
[2]   Sandra G, Usawadee H, Noelie C , et al. Beyond unpredictability: the importance of reproducibility in understanding the protein corona of nanoparticles. Bioconjugate Chemistry, 2018,29(10):3385-3393.
doi: 10.1021/acs.bioconjchem.8b00554 pmid: 30141619
[3]   Melby E S, Lohse S E, Park J E , et al. Cascading effects of nanoparticle coatings: surface functionalization dictates the assemblage of complexed proteins and subsequent interaction with model cell membranes. Acs Nano, 2017,11(6):5489-5499.
doi: 10.1021/acsnano.7b00231 pmid: 28482159
[4]   Kurtz-Chalot A, Villiers C, Pourchez J , et al. Impact of silica nanoparticle surface chemistry on protein corona formation and consequential interactions with biological cells. Materials Science and Engineering: C, 2017,75:16-24.
doi: 10.1016/j.msec.2017.02.028 pmid: 28415450
[5]   Sakulkhu U, Mahmoudi M, Maurizi L , et al. Significance of surface charge and shell material of superparamagnetic iron oxide nanoparticle (SPION) based core/shell nanoparticles on the composition of the protein corona. Biomater Sci, 2015,3(2):265-278.
doi: 10.1039/c4bm00264d pmid: 26218117
[6]   Lundqvist M, Stigler J, Elia G , et al. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. PNAS, 2008,105(38):14265-14270.
doi: 10.1073/pnas.0805135105 pmid: 18809927
[7]   Moyano D F, Saha K, Prakash G , et al. Fabrication of corona-free nanoparticles with tunable hydrophobicity. ACS Nano, 2014,8(7):6748-6755.
doi: 10.1021/nn5006478 pmid: 24971670
[8]   Hajipour M J, Laurent S, Aghaie A , et al. Personalized protein coronas: a “key” factor at the nanobiointerface. Biomaterials Science, 2014,2(9):1210.
doi: 10.1039/c4bm00131a
[9]   Aggarwal P, Hall J B, Mcleland C B , et al. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Advanced Drug Delivery Reviews, 2009,61(6):428-437.
doi: 10.1016/j.addr.2009.03.009 pmid: 19376175
[10]   Marichal L, Giraudon-Colas G, Cousin F , et al. Protein-nanoparticle interactions: what are the protein-corona thickness and organization? Langmuir, 2019,35(33):10831-10837.
doi: 10.1021/acs.langmuir.9b01373 pmid: 31333024
[11]   Weber C, Morsbach S, Landfester K . Possibilities and limitations of different separation techniques for the analysis of the protein corona. Angewandte Chemie International Edition, 2019,58(37):12787-12794.
doi: 10.1002/anie.201902323 pmid: 30933405
[12]   Cedervall T, Lynch I, Lindman S , et al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. PNAS, 2007,104(7):2050-2055.
doi: 10.1073/pnas.0608582104 pmid: 17267609
[13]   Gunawan C, Lim M, Marquis C P , et al. Nanoparticle-protein corona complexes govern the biological fates and functions of nanoparticles. Journal of Materials Chemistry B, 2014,2(15):2060.
doi: 10.1039/c3tb21526a
[14]   Holmberg M, Stibius K B, Larsen N B , et al. Competitive protein adsorption to polymer surfaces from human serum. Journal of Materials Science: Materials in Medicine, 2008,19(5):2179-2185.
doi: 10.1007/s10856-007-3318-9 pmid: 18044011
[15]   Gan N, Sun Q, Zhao L , et al. Protein corona of metal-organic framework nanoparticals: study on the adsorption behavior of protein and cell interaction. International Journal of Biological Macromolecules, 2019,140(1):709-718.
doi: 10.1016/j.ijbiomac.2019.08.183 pmid: 31445155
[16]   Tran R, Xu Z, Radhakrishnan B , et al. Surface energies of elemental crystals. Scientific Data, 2016,3:160080.
doi: 10.1038/sdata.2016.80 pmid: 27622853
[17]   Dominguez-Medina S, Blankenburg J, Olson J , et al. Adsorption of a protein monolayer via hydrophobic interactions prevents nanoparticle aggregation under harsh environmental conditions. ACS Sustainable Chemistry & Engineering, 2013,1(7):833-842.
doi: 10.1021/sc400042h pmid: 23914342
[18]   Gebauer J S, Malissek M, Simon S , et al. Impact of the nanoparticle-protein corona on colloidal stability and protein structure. Langmuir, 2012,28(25):9673-9679.
doi: 10.1021/la301104a pmid: 22524519
[19]   Thomas L. Moore, Laura Rodriguez-Lorenzo, Vera Hirsch , et al. Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chemical Society Reviews, 2015,44(17):6287-6305.
doi: 10.1039/c4cs00487f pmid: 26056687
[20]   Safi M, Courtois J, Seigneuret M , et al. The effects of aggregation and protein corona on the cellular internalization of iron oxide nanoparticles. Biomaterials, 2011,32(35):9353-9363.
doi: 10.1016/j.biomaterials.2011.08.048
[21]   Cukalevski R, Ferreira S A, Dunning C J , et al. IgG and fibrinogen driven nanoparticle aggregation. Nano Research, 2015,8(8):2733-2743.
doi: 10.1007/s12274-015-0780-4
[22]   Gao X, Cui Y, Levenson R M , et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology, 2004,22(8):969-976.
doi: 10.1038/nbt994 pmid: 15258594
[23]   Wilhelm S, Tavares A J, Dai Q , et al. Analysis of nanoparticle delivery to tumours. Nature Reviews Materials, 2016,1(5):16014.
doi: 10.1038/natrevmats.2016.14
[24]   Carril M, Padro D, DelPino P , et al. In situ detection of the protein corona in complex environments. Nature Communications, 2017,8(1):1542-1546.
doi: 10.1038/s41467-017-01826-4 pmid: 29142258
[25]   Lazarovits J, Chen Y Y, Sykes E A , et al. Nanoparticle-blood interactions: the implications on solid tumour targeting. Chemical Communications, 2015,51(14):2756-2767.
doi: 10.1039/c4cc07644c pmid: 26829150
[26]   Marilena H, Zahraa A A, Mariarosa M , et al. In vivo biomolecule corona around blood-circulating, clinically used and antibody-targeted lipid bilayer nanoscale vesicles. Acs Nano, 2015,9(8):8142-8156.
doi: 10.1021/acsnano.5b03300 pmid: 26135229
[27]   Forest V, Pourchez J . Preferential binding of positive nanoparticles on cell membranes is due to electrostatic interactions: a too simplistic explanation that does not take into account the nanoparticle protein corona. Materials Science & Engineering C Materials for Biological Applications, 2017,70(1):889-896.
doi: 10.1016/j.msec.2016.09.016 pmid: 27770966
[28]   Mirshafiee V, Mahmoudi M, Lou K , et al. Protein corona significantly reduces active targeting yield. Chemical Communications, 2013,49(25):2557-2559.
doi: 10.1039/c3cc37307j
[29]   Salvati A, Pitek A S, Monopoli M P , et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nature Nanotechnology, 2013,8(2):137-143.
doi: 10.1038/NNANO.2012.237
[30]   Dai Q, Yan Y, Guo J , et al. Targeting ability of affibody-functionalized particles is enhanced by albumin but inhibited by serum coronas. ACS Macro Letters, 2015,4(11):1259-1263.
doi: 10.1021/acsmacrolett.5b00627
[31]   Ju Y, Dai Q, Cui J , et al. Improving targeting of metal-phenolic capsules by the presence of protein coronas. ACS Applied Materials & Interfaces, 2016,8(35):22914-22922.
doi: 10.1021/acsami.6b07613 pmid: 27560314
[32]   Shi J, Kantoff P W, Wooster R , et al. Cancer nanomedicine: progress, challenges and opportunities. Nature Reviews Cancer, 2017,17(1):20-37.
doi: 10.1038/nrc.2016.108 pmid: 27834398
[33]   Peng Q, Zhang S, Yang Q , et al. Preformed albumin corona, a protective coating for nanoparticles based drug delivery system. Biomaterials, 2013,34(33):8521-8530.
doi: 10.1016/j.biomaterials.2013.07.102
[34]   Shang L, Nienhaus K, Nienhaus G . Engineered nanoparticles interacting with cells: size matters. Journal of Nanobiotechnology, 2014,12(1):5.
doi: 10.1186/1477-3155-12-5 pmid: 24491160
[35]   Maynard A D, Warheit D B, Philbert M A . The new toxicology of sophisticated materials: nanotoxicology and beyond. Toxicological Sciences, 2011,120(1):S109-S129.
doi: 10.1093/toxsci/kfq372 pmid: 21177774
[36]   Hamad-Schifferli, Kimberly . Exploiting the novel properties of protein coronas: emerging applications in nanomedicine. Nanomedicine, 2015,10(10):1663-1674.
doi: 10.2217/nnm.15.6 pmid: 26008198
[37]   Lesniak A, Salvati A, Santos-Martinez M J , et al. Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. Journal of the American Chemical Society, 2013,135(4):1438-1444.
doi: 10.1021/ja309812z pmid: 23301582
[38]   Ding F, Radic S, Chen R , et al. Direct observation of a single nanoparticle-ubiquitin corona formation. Nanoscale, 2013,5(19):9162-9169.
doi: 10.1039/c3nr02147e
[39]   Podila R, Chen R, Ke P C , et al. Effects of surface functional groups on the formation of nanoparticle-protein corona. Applied Physics Letters, 2012,101(26):263701.
doi: 10.1063/1.4772509 pmid: 23341687
[40]   Herda L M, Hristov D R, Lo Giudice M C , et al. Mapping of molecular structure of the nanoscale surface in bionanoparticles. Journal of the American Chemical Society, 2017,139(1):111-114.
doi: 10.1021/jacs.6b12297 pmid: 28005336
[41]   Kelly P M, Aberg C, Polo E , et al. Mapping protein binding sites on the biomolecular corona of nanoparticles. Nature Nanotechnology, 2015,10(5):472-479.
doi: 10.1038/nnano.2015.47 pmid: 25822932
[42]   Casals E, Puntes, Víctor F . Inorganic nanoparticle biomolecular corona: formation, evolution and biological impact. Nanomedicine, 2012,7(12):1917-1930.
doi: 10.2217/NNM.12.169
[43]   Lesniak A, Salvati A, Santos-Martinez M J , et al. Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. Journal of the American Chemical Society, 2013,135(4):1438-1444.
doi: 10.1021/ja309812z pmid: 23301582
[44]   Treuel L, Brandholt S, Maffre P , et al. Impact of protein modification on the protein corona on nanoparticles and nanoparticle-cell interactions. ACS Nano, 2014,8(1):503-513.
doi: 10.1021/nn405019v pmid: 24377255
[45]   Ali P, Mohammad A . Current opinion on nanotoxicology. Daru Journal of Faculty of Pharmacy Tehran University of Medical Sciences, 2012,20(1):95.
[46]   Ge C, Du J, Zhao L , et al. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proceedings of the National Academy of Sciences, 2011,108(41):16968-16973.
[47]   Hu W, Peng C, Lv M , et al. Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS NANO, 2011,5(5):3693-3700.
doi: 10.1021/nn200021j pmid: 21500856
[48]   Peng Q, Zhang S, Yang Q , et al. Preformed albumin corona, a protective coating for nanoparticles based drug delivery system. Biomaterials, 2013,34(33):8521-8530.
doi: 10.1016/j.biomaterials.2013.07.102
[49]   Treuel L, Brandholt S, Maffre P , et al. Impact of protein modification on the protein corona on nanoparticles and nanoparticle-cell interactions. ACS Nano, 2014,8(1):503-513.
doi: 10.1021/nn405019v pmid: 24377255
[50]   Hong N V, Beom-Jin L . Protein corona: a new approach for nanomedicine design. International Journal of Nanomedicine, 2017,12:3137-3151.
doi: 10.2147/IJN.S129300 pmid: 28458536
[51]   Cabaleiro-Lago C, Szczepankiewicz O, Linse S . The effect of nanoparticles on amyloid aggregation depends on the protein stability and intrinsic aggregation rate. Langmuir, 2012,28(3):1852-1857.
doi: 10.1021/la203078w pmid: 22168533
[52]   Shang L, Wang Y, Jiang J , et al. PH-dependent protein conformational changes in albumin: gold nanoparticle bioconjugates: a spectroscopic study. Langmuir, 2007,23(5):2714-2721.
doi: 10.1021/la062064e pmid: 17249699
[53]   Kurylowicz M, Paulin H, Mogyoros J , et al. The effect of nanoscale surface curvature on the oligomerization of surface-bound proteins. Journal of The Royal Society Interface, 2014,11(94):20130818-20130818.
doi: 10.1098/rsif.2013.0818 pmid: 24573329
[54]   Cabaleiro-Lago C, Quinlan-Pluck F, Lynch I , et al. Inhibition of amyloid β protein fibrillation by polymeric nanoparticles. Journal of the American Chemical Society, 2008,130(46):15437-15443.
doi: 10.1021/ja8041806 pmid: 18954050
[55]   Fleischer C C, Payne C K . Nanoparticle-cell interactions: molecular structure of the protein corona and cellular outcomes. Accounts of Chemical Research, 2014,47(8):2651-2659.
doi: 10.1021/ar500190q
[56]   Dawson K A, Salvati A, Lynch I . Nanotoxicology: nanoparticles reconstruct lipids. Nature Nanotechnology, 2009,4(2):84-85.
doi: 10.1038/nnano.2008.426 pmid: 19197306
[57]   Wei Q, Becherer T, Angioletti-Uberti S , et al. Protein interactions with polymer coatings and biomaterials. Angewandte Chemie International Edition, 2014,53(31):8004-8031.
doi: 10.1002/anie.201400546 pmid: 25045074
[58]   Chapman R G, Ostuni E, Takayama S , et al. Surveying for surfaces that resist the adsorption of proteins. Journal of the American Chemical Society, 2000,122(34):8303-8304.
doi: 10.1021/ja000774f
[59]   Ostuni E, Chapman R G, Holmlin R E , et al. A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir, 2001,17(18):5605-5620.
doi: 10.1021/la010384m
[60]   Kingshott P, Thissen H, Griesser H J . Effects of cloud-point grafting, chain length, and density of PEG layers on competitive adsorption of ocular proteins. Biomaterials, 2002,23(9):2043-2056.
doi: 10.1016/S0142-9612(01)00334-9
[61]   Tiller K E, Tessier P M . Advances in antibody design. Annual Review of Biomedical Engineering, 2015,17(1):191-216.
doi: 10.1146/annurev-bioeng-071114-040733
[62]   Schottler S, Becker G, Winzen S , et al. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nature Nanotechnology, 2016,11(4):372-377.
doi: 10.1038/nnano.2015.330 pmid: 26878141
[63]   Walkey C D, Olsen J B, Guo H , et al. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. Journal of the American Chemical Society, 2012,134(4):2139-2147.
doi: 10.1021/ja2084338
[64]   Clemments A M, Muniesa C, Landry C C , et al. Effect of surface properties in protein corona development on mesoporous silica nanoparticles. RSC Advances, 2014,4(55):29134-29138.
doi: 10.1039/c4ra03277b
[65]   Simonelli F, Rossi G, Monticelli L . Role of ligand conformation on nanoparticle-protein interactions. Journal of Physical Chemistry B, 2019,123(8):1764-1769.
doi: 10.1021/acs.jpcb.8b11204 pmid: 30698447
[66]   Grunér M S, Kauscher U, Linder M B , et al. An environmental route of exposure affects the formation of nanoparticle coronas in blood plasma. Journal of Proteomics, 2016,137(15):52-58.
doi: 10.1016/j.jprot.2015.10.028 pmid: 26546559
[67]   Yeo E L L, Thong S P, Soo K C , et al. Protein corona in drug delivery for multimodal cancer therapy in vivo. Nanoscale, 2018,10(5):2461-2472.
doi: 10.1039/c7nr08509e pmid: 29336463
[1] LI Jia-xin,ZHANG Zheng,LIU He,YANG Qing,LV Cheng-zhi,YANG Jun. Preparation and Drug Release Properties of Keratin-loaded Nanoparticles[J]. China Biotechnology, 2021, 41(8): 8-16.
[2] CHEN Dong,LI Cheng-cheng,SHI Zhong-ping. Lactobacillus plantarum Exopolysaccharide Coated High-Stable Selenium Nanoparticles and Its Antioxidant Activity[J]. China Biotechnology, 2020, 40(9): 18-27.
[3] YANG Wei,SONG Fang-xiang,WANG Shuai,ZHANG Li,WANG Hong-xia,LI Yan. Preparation and Application of Janus Nanoparticles in Drug Delivery System[J]. China Biotechnology, 2020, 40(7): 70-81.
[4] FANG Yuan,ZHANG Tong-wei,CAO Chang-qian,TIAN Jie-sheng,LIN Wei. Diversity and Applications of Magnetotactic Bacteria[J]. China Biotechnology, 2019, 39(12): 73-82.
[5] LI Wen,CHEN Jie,HU Wei-nan,QI Ya-yun,FU Yi-hong,LIU Jia-min,WANG Zhen-chao,OUYANG Gui-ping. Research Advances in the Study of EGFR Mutations Resistance and Its Small Molecule Inhibitors[J]. China Biotechnology, 2019, 39(10): 97-104.
[6] Fang-xu WANG,Yu-ling CHEN,Du-yan GENG,Chuan-fang CHEN. Research Progress on Biomedical Applications of Magnetotactic Bacteria and the Biosynthetic Magnetosomes[J]. China Biotechnology, 2018, 38(9): 74-80.
[7] Yue ZHAO,Hao WU,Jian-jun QIAO. Research on the Regulatory Mechanisms of Bacterial Cell Wall Growth[J]. China Biotechnology, 2018, 38(8): 92-99.
[8] Li-li YU,Bo HU,Xue LI,Nai-shuo ZHU. Identification of Protein-protein Interaction of Hepatitis B Virus X Protein and Tab1 in Vivo and in Vitro[J]. China Biotechnology, 2018, 38(7): 1-6.
[9] CHEN Xiao-li, ZOU Ming-yuan, XIE Xin, WANG Sheng-yu, WU Ting, SU Jin-hua. Construction of a Neotype Controllability Magnetic Targeting Restructuring Truncated Tissue Factor[J]. China Biotechnology, 2017, 37(9): 60-64.
[10] MENG Kun, HE Qing-yu, WANG Tong, LU Shao-hua. The Study of Protein-protein Interactions Using a Flow Cytometry-based FRET Technology in Living Cells[J]. China Biotechnology, 2017, 37(5): 45-51.
[11] XIN Lin, YANG Wei-feng, ZHANG Hou-ting, LI Yi-fan. Preparation of Folic Acid/chitosan-Prdx6 shRNA Nanoparticles and Its Anti-carcinoma Effect on Gastric Cancer Cell Proliferation[J]. China Biotechnology, 2017, 37(1): 7-13.
[12] WU Qin, HU Die, LI Xue-qing, YUAN Feng-jiao, LI Jian-fang, WU Min-chen. Site-directed Mutagenesis of Y13F to Improve the Thermotolerance of Mesophilic Xylanase from Aspergillus oryzae[J]. China Biotechnology, 2016, 36(12): 36-41.
[13] ZHANG Chen-chen, MENG Zhi-zhong, LU Yuan-fang, CHEN Xin, LI Shan. Homology Modeling and Structure Analysis of SoxYZ: A Carrier of Sulfur Compounds from Thiobacillus denitrificans[J]. China Biotechnology, 2015, 35(7): 68-75.
[14] WU Jun, YAN Xin, SHAO Rong, DUAN Jing-hua. Study of Co-encapsulated Doxorubicin and Curcumin Poly(butyl cyanoacrylate) Nanoparticles and Reversion of Multidrug Resistance in MCF/ADR Cell Line[J]. China Biotechnology, 2013, 33(5): 35-43.
[15] CHEN Kuan-ting, YAO Jun, RUAN Wen-hui, WEI Qin-jun, LU Ya-jie, CAO Xin. Preparation of a Novel Self-assembly Nanoparticle Based on Amphiphilic γ-Polyglutamic Acid Derivatives as a Protein Carrier[J]. China Biotechnology, 2013, 33(4): 101-105.