Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (1-2): 189-197    DOI: 10.13523/j.cb.1906010
Orginal Article     
Development Trends Analysis of Microbial Fuel Cell
JIANG Tian(),ZHANG Chao,LIU Hui-zhou
National Science Library, Chinese Academy of Sciences, Beijing 100190, China
Download: HTML   PDF(1607KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

With the rapid development of the world economy and the continuous growth of the population, energy shortage and environmental pollution has increasingly become the bottleneck of development. Microbial Fuel Cell (MFC) is a highly promising technology for sustainable wastewater treatment, which can directly convert the chemical energy stored in the pollutants into electric energy. In addition, the MFC technology also shows attractive prospects in sludge disposal, bioremediation, environmental monitoring, desalination and other aspects. Based on the Web of Science and Derwent Innovation database, the paper and patent data from 1990-2018 in the field of MFC was analyzed and the development trends, international distribution, research hotspots and technology fields were obtained. On this basis, the future development of MFC field was prospected, and the development of China’s MFC industrialization was proposed.



Key wordsMicrobial fuel cell      MFC      Paper analysis      Patent analysis     
Received: 06 June 2019      Published: 27 March 2020
ZTFLH:  Q819  
Corresponding Authors: Tian JIANG     E-mail: jiangtian@mail.las.ac.cn
Cite this article:

JIANG Tian,ZHANG Chao,LIU Hui-zhou. Development Trends Analysis of Microbial Fuel Cell. China Biotechnology, 2020, 40(1-2): 189-197.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.1906010     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I1-2/189

Fig.1 The annual distribution of MFC publications from 1990 to 2018
Fig.2 The annual distribution of MFC patent applications from 1990 to 2018
Fig.3 Publication numbers and citations per paper of Top20 countries
序号 国家 专利数目 总被引
频次
被引频次
大于10的
专利数目
被引频次大于
10的专利累
计被引频次
1 中国 1 352 3 147 82 1 290
2 日本 419 2 068 57 1 376
3 美国 380 8 711 158 8 104
4 韩国 178 564 8 378
Table1 Patents numbers and citations of Top4 countries
Fig.4 Top10 organizations of publications (a) and Top10 assignees for MFC (b)
Fig.5 Analysis on the composition of assignees in the MFC field
序号 IPC 涉及技术领域 专利数量 主要技术来源国家
1 H01M 直接转变化学能为电能的方法或装置 2 162 中国、日本、美国
2 C02F 水、废水、污水或污泥的处理 737 中国、日本、韩国
3 C12N 微生物或酶;其组合物 227 日本、中国、美国
4 G01N 借助于材料的理化性质测试或分析材料 178 日本、中国、美国
5 C12M 酶学或微生物学装置 105 日本、美国、中国
6 C12Q 包含酶或微生物的测定或检验方法 87 日本、美国、韩国
7 C12R 涉及微生物 76 中国、日本、美国
8 C12P 发酵或使用酶的方法合成目标化合物 72 美国、中国、日本
9 C25B 生产化合物或非金属的电解工艺或电泳工艺;其所用的设备 72 中国、美国、日本
10 B01J 化学或物理方法,如催化作用 60 中国、日本、美国
Table 2 Main technical distribution and source countries of MFC technology
Fig.6 Analysis on the technical composition of the main source countries of MFC technology
Fig.7 Patent map of MFC
序号 主题内容 主题强度
1 MFC污水处理同步发电 0.088 300 94
2 MFC性能参数及评价指标 0.055 434 09
3 胞外电子传递机制 0.039 419 18
4 MFC生物质能利用 0.037 892 68
5 MFC电解产氢 0.035 797 99
6 MFC电解产甲烷 0.035 279 24
7 MFC结构健康监测 0.034 857 11
8 MFC底物 0.034 700 82
9 MFC还原重金属 0.033 189 93
10 污泥厌氧消化 0.033 006 46
11 沉积物MFC 0.032 229 56
12 阳极生物膜 0.031 433 28
13 MFC脱盐、海水淡化 0.031 208 62
14 脱氮微生物群落结构 0.031 081 72
15 纯菌型MFC/混菌型MFC 0.030 726 48
16 MFC制备 0.030 687 91
17 光合MFC 0.030 620 78
18 石油污染土壤的生物修复 0.029 987 36
19 酶生物燃料电池 0.029 969 62
20 生物传感器 0.029 848 93
21 产电基因工程菌 0.029 818 23
22 产电微生物种群生长数学建模 0.028 980 11
23 分隔膜 0.028 850 97
24 生态修复 0.028 538 58
Table 3 LDA topic identification results of MFC papers
[1]   张吉强, 郑平, 李甲亮 , 等. 微生物燃料电池同步脱氮产电研究. 徐州: 中国矿业大学出版社, 2016: 1-3.
[1]   Zhang J Q, Zheng P, Li J L , et al. Study on synchronous denitrification and electrogeneration of microbial fuel cells. Xuzhou: China University of Mining and Technology Press, 2016: 1-3.
[2]   Potter M C . Electrical effects accompanying the decomposition of organic compounds. Proceedings of the Royal Society B-Biological Sciences, 1911,84(571):260-276.
[3]   连静, 冯雅丽, 李浩然 , 等. 微生物燃料电池的研究进展. 过程工程学报, 2006,6(2):334-338.
[3]   Lian J, Feng Y L, Li H R , et al. Advances in microbial fuel cells. The Chinese Journal of Process Engineering, 2006,6(2):334-338.
[4]   Bond D R, Holmes D E, Tender L M , et al. Electrode-reducing microorganisms that harvest energy from marine sediments. Science, 2002,295(5554):483-485.
[5]   Reguera G, Nevin K P, Nicoll J S , et al. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Applied and Environmental Microbiology, 2006,72(11):7345-7348.
[6]   Kim B H, Kim H J, Hyun M S , et al. Direct electrode reaction of Fe (III)-reducing bacterium, Shewanella putrefaciens. Journal of Microbiology and Biotechnology, 1999,9(2):127-131.
[7]   Kim H J, Park H S, Hyun M S , et al. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme and Microbial Technology, 2002,30(2):145-152.
[8]   Park H S, Kim B H, Kim H S , et al. A novel electrochemically active and Fe (III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe, 2001,7(6):297-306.
[9]   Rabaey K, Boon N, Siciliano S D , et al. Biofuel cells select for microbial consortia that self-mediate electron transfer. Applied and Environmental Microbiology, 2004,70(9):5373-5382.
[10]   Reguera G, McCarthy K D, Mehta T , et al. Extracellular electron transfer via microbial nanowires. Nature, 2005,435(7045):1098-1101.
[11]   Li C, Lesnik K L, Liu H . Stay connected: electrical conductivity of microbial aggregates. Biotechnology Advances, 2017,35(6):669-680.
[12]   Logan B E, Rossi R, Ragab A , et al. Electroactive microoganisms in bioelectrochemical systems. Nature Reviews Microbiology, 2019,17(5):307-319.
[13]   Logan B E, Rabaey K . Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science, 2012,337(6095):686-690.
[14]   Zou L, Huang Y H, Long Z E , et al. On-going applications of Shewanella species in microbial electrochemical system for bioenergy, bioremediation and biosensing. World Journal of Microbiology & Biotechnology, 2018,35(1):9.
[15]   Zhou T, Han H, Liu P , et al. Microbial fuels cell-based biosensor for toxicity detection: A Review. Sensors, 2017,17(10):E2230.
[16]   Liang P, Huang X, Fan M Z , et al. Composition and distribution of internal resistance in three types of microbial fuel cells. Applied Microbiology and Biotechnology, 2007,77(3):551-558.
[17]   Liu H R, Feng Y L, Tang X H , et al. The factors affecting biofilm formation in the mediatorless microbial fuel cell. Chemical and Biochemical Engineering Quarterly, 2010,24(3):341-346.
[18]   Meng F Y, Zhao Q L, Zheng Z , et al. Simultaneous sludge degradation, desalination and bioelectricity generation in two-phase microbial desalination cells. Chemical Engineering Journal, 2018,361(12):180-188.
[19]   Blei D M, Ng A Y, Jordan M I . Latent dirichlet allocation. Journal of Machine Learning Research, 2003,3(4-5):993-1022.
[20]   Dong K, Jia B Y, Yu C L , et al. Microbial fuel cell as power supply for implantable medical devices: A novel configuration design for simulating colonic environment. Biosensors &Bioelectronics, 2013,41:916-919.
[21]   Gong Y, Radachowsky S E, Wolf M . Benthic microbial fuel cell as direct power source for an acoustic modem and seawater oxygen/temperature sensor system. Environmental Science &Technology, 2011,45(11):5047-5053.
[22]   劳慧敏, 李金页, 贾玉平 . 植物微生物燃料电池技术的研究进展. 科技通报, 2016,32(3):189-193.
[22]   Lao H M, Li J Y, Jia Y P . Advances in plant microbial fuel cell technology. Bulletin of Science and Technology, 2016,32(3):189-193.
[23]   Guan C Y, Hu A, Yu C P . Stratified chemical and microbial characteristics between anode and cathode after long-term operation of plant microbial fuel cells for remediation of metal contaminated soils. Science of the Total Environment, 2019,670:585-594.
[1] CHEN Ying,LI Qian. Patent Analysis on the Development Trend of Industrial Application of Special Yeast[J]. China Biotechnology, 2021, 41(4): 91-99.
[2] XIE Hua-ling,LV Lu-cheng,YANG Yan-ping. Patent Analysis of Global Coronavirus Vaccine[J]. China Biotechnology, 2020, 40(1-2): 57-64.
[3] HUANG Peng-fei,CHEN Yun,LU Jiao,MAO Kai-yun,YUAN Yin-chi. Development Situation and Suggestions of Biomedicine Patent-intensive Industry, Based on the Case Study of Shanghai[J]. China Biotechnology, 2020, 40(12): 108-116.
[4] Qing BI,Lin SUN. Analysis and Comparison of Foreign and Chinese Patent Applications in Chimeric Antigen Receptor T Cell (CAR-T) Technology[J]. China Biotechnology, 2018, 38(4): 107-114.
[5] XIA Tai-shou, WANG Yuan-lei, TIAN Li-li. Reserch on Present Situation and Countermeasure of Jiangsu Biomedical Business Based on Patent[J]. China Biotechnology, 2016, 36(8): 123-130.
[6] LI Dong qiao, GUO Wen jiao, CHEN Fang. Research on Development Trend of Transgenic Medicinal Plant Technology Based on Patent Analysis[J]. China Biotechnology, 2016, 36(11): 98-108.
[7] ZHAO Hui-cun. Research and Development Trend of Biological Reactor Technology Based on Patent Visualization[J]. China Biotechnology, 2016, 36(1): 115-121.
[8] WU Xue-yan, HAN Xue-bing, DAI Lei. Patentometric Analysis of Transgenic Soybean Technology Based on DII[J]. China Biotechnology, 2013, 33(3): 143-148.
[9] . Advance in technologies of hydrogen production from biomass[J]. China Biotechnology, 2006, 26(05): 107-112.