Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (11): 16-26    DOI: 10.13523/j.cb.2305017
研究报告     
番茄SlNAC1基因启动子低温、高温和ABA应答顺式元件分析*
李德鑫1,2,乐露3,陶向4,廖海1,周嘉裕1,**(),黄维藻2,**()
1 西南交通大学生命科学与工程学院 成都 610031
2 中国科学院成都生物研究所 成都 610041
3 阿坝师范学院资源与环境学院 成都 623002
4 四川师范大学生命科学学院 成都 610101
Analysis of Cold-, Heat-, and ABA-responsive cis Elements in Tomato SlNAC1 Promoter
LI De-xin1,2,YUE Lu3,TAO Xiang4,LIAO Hai1,ZHOU Jia-yu1,**(),HUANG Wei-zao2,**()
1 School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
2 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
3 College of Resources and Environment, Aba Teachers University, Chengdu 623002, China
4 College of Life Science, Sichuan Normal University, Chengdu 610101, China
 全文: PDF(2523 KB)   HTML
摘要:

番茄转录因子SlNAC1调控多种生物和非生物胁迫应答,但其上游转录调控因子至今不明,限制了对其胁迫应答机制的理解。构建了系列5'-缺失的SlNAC1启动子(起始密码子上游2 039 bp、1 508 bp、1 373 bp和777 bp)驱动的GUS转基因烟草,并定量分析了其在低温、高温和ABA诱导下的GUS酶活,以鉴定SlNAC1启动子中的低温、高温和ABA应答顺式元件。结果显示,低温和高温诱导后,2 039 bp启动子转基因烟草GUS酶活的增长显著高于其他转基因烟草和野生型烟草;而ABA诱导后,1 508 bp启动子转基因烟草GUS酶活的增长显著高于其他转基因烟草和野生型烟草。这些结果说明低温和高温应答顺式元件位于-2 039~-1 508 bp区间,而ABA应答顺式元件位于-1 508~-1 373 bp区间。启动子顺式元件预测分析显示,-2 039 bp~-1 508 bp区间只有1个低温/高温/干旱/盐应答顺式元件DRE/CRT,而-1 508 bp~-1 373 bp区间只有1个ABA应答顺式元件ABRE。因此,这两个顺式元件将作为候选元件用于后续SlNAC1上游调控转录因子的筛选。

关键词: 转录因子SlNAC1启动子顺式元件胁迫应答    
Abstract:

Tomato transcription factor SlNAC1 has been reported to regulate several biotic and abiotic stress responses, but its upstream regulatory transcription factors remain unknown, which limits our understanding of its molecular mechanism of stress responses. We constructed series of 5'-deleted SlNAC1 promoters (2 039 bp, 1 508 bp, 1 373 bp and 777 bp upstream of start codon) -driven GUS transgenic Nicotiana benthamiana and analyzed quantitatively their GUS activity under cold, heat and ABA treatment conditions in order to identify cold-, heat-, and ABA-responsive cis elements. Our results show that the GUS activity of 2 039 bp promoter-driven transgenic Nicotiana benthamiana increased much higher than that of any other transgenic Nicotiana benthamiana and wild-type Nicotiana benthamiana after cold and heat treatment, while the GUS activity of 1 508 bp promoter-driven transgenic Nicotiana benthamiana increased much higher than that of any other transgenic Nicotiana benthamiana and wild-type Nicotiana benthamiana after ABA treatment. These results indicate that both cold-responsive and heat-responsive cis elements were located in the region from -2 039 bp to -1 508 bp, and ABA-responsive cis element(s) was(were) located in the region from -1 508 bp to -777 bp. According to cis elements' prediction of SlNAC1 promoter, there were only one cold/heat/drought/salt-responsive cis element DRE/CRT in the region from -2 039 bp to -1 508 bp and only one ABA-responsive cis element ABRE in the region from -1 508 bp to -777 bp. Therefore, these two cis elements will be used as candidates for subsequent site-directed mutagenesis validation and screening of the upstream regulatory transcription factor of SlNAC1.

Key words: Transcription factor    SlNAC1    Promoter    cis element    Stress-responsive
收稿日期: 2023-05-11 出版日期: 2023-12-01
ZTFLH:  Q789  
基金资助: *四川省国际科技创新合作(2020YFH0003)
通讯作者: **周嘉裕,黄维藻     E-mail: spinezhou@home.swjtu.edu.cn;huangwz@cib.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李德鑫
乐露
陶向
廖海
周嘉裕
黄维藻

引用本文:

李德鑫, 乐露, 陶向, 廖海, 周嘉裕, 黄维藻. 番茄SlNAC1基因启动子低温、高温和ABA应答顺式元件分析*[J]. 中国生物工程杂志, 2023, 43(11): 16-26.

LI De-xin, YUE Lu, TAO Xiang, LIAO Hai, ZHOU Jia-yu, HUANG Wei-zao. Analysis of Cold-, Heat-, and ABA-responsive cis Elements in Tomato SlNAC1 Promoter. China Biotechnology, 2023, 43(11): 16-26.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2305017        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I11/16

引物名称 引物序列 引物用途
SlNAC1-qPCR-F
SlNAC1-qPCR-R
Actin-F
Actin-R
CTCTGCTGGCAAGAACAA
GGTGGCATCGGTGCTAAT
GGAATGGGACAGAAGGAT
CAGTCAGGAGAACAGGGT
For the qRT-PCR analysis of SlNAC1


表1  qRT-PCR引物信息
引物名称 引物序列 引物用途
AC
AD
RBSP1
RBSP2
RBSP3
LBSP1
LBSP2
LBSP3
ACGATGGACTCCAGAG
ACGATGGACTCCAGAGCGGCCGCVNVNNNGGAA
CAGATTATTTGGATTGAGAGTGAA
ACGATGGACTCCAGTCCGGCCGATAGTGACCTTAGGCGACTTTTG
ATCAGATTGTCGTTTCCCGCCTTC
GAACAACACTCAACCCTATCTCGG
ACGATGGACTCCAGTCCGGCCCGGAACCACCATCAAACAGGAG
CTGTTGCCCGTCTCACTGGT
For identification of T-DNA insertion sites
SlNAC1Pro1-F
SlNAC1Pro1-R
SlNAC1Pro2-F
SlNAC1Pro2-R
SlNAC1Pro3-F
SlNAC1Pro3-R
SlNAC1Pro4-F
SlNAC1Pro4-R
GTCATCATAGGGACGGAGTCTC
CCTATTTGTTCCCGTGATAAGAT
GCTGAATTTCCGTTAGTCGTAGG
GCAATCAGAAGGCATTTCTCCA
ACCACGATTGATTCCCTTTA
AGACATTGTATCAAACGAGTGC
GAATCGCTTTGCTCACCTCC
GAGACGAAGTCAGCAGTGGC
For identification of transgenic homozygote
表2  引物信息
图1  低温、高温和ABA处理下SlNAC1的相对表达水平
图2  SlNAC1启动子胁迫应答顺式元件预测
图3  系列5'-缺失SlNAC1启动子驱动的GUS表达载体及其T-DNA在染色体上的插入位点示意图
图4  低温处理下GUS染色和GUS酶活定量
图5  高温处理下GUS染色和GUS酶活定量
图6  ABA处理下GUS染色和GUS酶活定量
[1] Calanca P P. Effects of abiotic stress in crop production. Quantification of climate variability, adaptation and mitigation for agricultural sustainability. Cham: Springer, 2017: 165-180.
[2] Godoy F, Olivos-Hernández K, Stange C, et al. Abiotic stress in crop species: improving tolerance by applying plant metabolites. Plants (Basel, Switzerland), 2021, 10(2): 186.
[3] Zhu J K. Abiotic stress signaling and responses in plants. Cell, 2016, 167(2): 313-324.
doi: 10.1016/j.cell.2016.08.029
[4] Baillo E H, Kimotho R N, Zhang Z B, et al. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes, 2019, 10(10): 771.
doi: 10.3390/genes10100771
[5] Souer E, van Houwelingen A, Kloos D, et al. The No apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell, 1996, 85(2): 159-170.
doi: 10.1016/s0092-8674(00)81093-4 pmid: 8612269
[6] Nuruzzaman M, Sharoni A M, Kikuchi S. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Frontiers in Microbiology, 2013, 4: 248.
doi: 10.3389/fmicb.2013.00248 pmid: 24058359
[7] Nakano Y, Yamaguchi M, Endo H, et al. NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants. Frontiers in Plant Science, 2015, 6: 288.
doi: 10.3389/fpls.2015.00288 pmid: 25999964
[8] Forlani S, Mizzotti C, Masiero S. The NAC side of the fruit: tuning of fruit development and maturation. BMC Plant Biology, 2021, 21(1): 238.
doi: 10.1186/s12870-021-03029-y pmid: 34044765
[9] Ohnishi T, Sugahara S, Yamada T, et al. OsNAC6, a member of the NAC gene family, is induced by various stresses in rice. Genes & Genetic Systems, 2005, 80(2): 135-139.
[10] Nakashima K, Tran L S P, Van Nguyen D, et al. Functional analysis of a NAC-type transcription factor OsNAC 6 involved in abiotic and biotic stress-responsive gene expression in rice. The Plant Journal: for Cell and Molecular Biology, 2007, 51(4): 617-630.
doi: 10.1111/tpj.2007.51.issue-4
[11] Qu X X, Zou J J, Wang J X, et al. A rice R2R3-type MYB transcription factor OsFLP positively regulates drought stress response via OsNAC. International Journal of Molecular Sciences, 2022, 23(11): 5873.
doi: 10.3390/ijms23115873
[12] Lee D K, Chung P J, Jeong J S, et al. The rice OsNAC 6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance. Plant Biotechnology Journal, 2017, 15(6): 754-764.
doi: 10.1111/pbi.2017.15.issue-6
[13] Ma N N, Zuo Y Q, Liang X Q, et al. The multiple stress-responsive transcription factor SlNAC1 improves the chilling tolerance of tomato. Physiologia Plantarum, 2013, 149(4): 474-486.
doi: 10.1111/ppl.2013.149.issue-4
[14] Selth L A, Dogra S C, Rasheed M S, et al. A NAC domain protein interacts with tomato leaf curl virus replication accessory protein and enhances viral replication. The Plant Cell, 2005, 17(1): 311-325.
doi: 10.1105/tpc.104.027235
[15] Huang W Z, Miao M, Kud J, et al. SlNAC1, a stress-related transcription factor, is fine-tuned on both the transcriptional and the post-translational level. New Phytologist, 2013, 197 (4): 1214-1224.
doi: 10.1111/nph.12096 pmid: 23278405
[16] Liang X Q, Ma N N, Wang G D, et al. Suppression of SlNAC1 reduces heat resistance in tomato plants. Biologia Plantarum, 2015, 59(1): 92-98.
doi: 10.1007/s10535-014-0477-7
[17] Ma N N, Feng H L, Meng X, et al. Overexpression of tomato SlNAC 1 transcription factor alters fruit pigmentation and softening. BMC Plant Biology, 2014, 14(1): 1-14.
doi: 10.1186/1471-2229-14-1
[18] Meng C, Yang D Y, Ma X C, et al. Suppression of tomato SlNAC1 transcription factor delays fruit ripening. Journal of Plant Physiology, 2016, 193: 88-96.
doi: 10.1016/j.jplph.2016.01.014 pmid: 26962710
[19] 古袁扬, 乐露, 马欣荣, 等. 番茄SINAC1基因启动子的盐应答功能分析. 应用与环境生物学报, 2021, 27(4): 988-993.
Gu Y Y, Le L, Ma X R, et al. Salt response analysis of tomato SINAC1 promoter. Chinese Journal of Applied and Environmental Biology, 2021, 27(4): 988-993.
[20] Yue L, Zhuang Y, Gu Y Y, et al. Heterologous expression of Solanum tuberosum NAC1 gene confers enhanced tolerance to salt stress in transgenic Nicotiana benthamiana. Journal of Plant Biology, 2021, 64(6): 531-542.
doi: 10.1007/s12374-021-09327-0
[21] Wang C H, Gao G, Cao S X, et al. Isolation and functional validation of the CmLOX08 promoter associated with signalling molecule and abiotic stress responses in oriental melon, Cucumis melo var. makuwa Makino. BMC Plant Biology, 2019, 19(1): 1-14.
doi: 10.1186/s12870-018-1600-2
[22] Nguyen N H, Vu N T, Cheong J J. Transcriptional stress memory and transgenerational inheritance of drought tolerance in plants. International Journal of Molecular Sciences, 2022, 23(21): 12918.
doi: 10.3390/ijms232112918
[23] Mao H D, Jian C, Cheng X X, et al. The wheat ABA receptor gene TaPYL1-1 B contributes to drought tolerance and grain yield by increasing water-use efficiency. Plant Biotechnology Journal, 2022, 20(5): 846-861.
doi: 10.1111/pbi.v20.5
[24] Wei S B, Li X, Lu Z F, et al. A transcriptional regulator that boosts grain yields and shortens the growth duration of rice. Science, 2022, 377(6604): eabi8455.
doi: 10.1126/science.abi8455
[25] Hwarari D, Guan Y L, Ahmad B, et al. ICE-CBF-COR signaling cascade and its regulation in plants responding to cold stress. International Journal of Molecular Sciences, 2022, 23(3): 1549.
doi: 10.3390/ijms23031549
[26] Lee M, Dominguez-Ferreras A, Kaliyadasa E, et al. Mediator subunits MED16, MED14, and MED 2 are required for activation of ABRE-dependent transcription in Arabidopsis. Frontiers in Plant Science, 2021, 12: 649720.
doi: 10.3389/fpls.2021.649720
[27] Jiang Y, Peng D, Bai L P, et al. Molecular switch for cold acclimation: anatomy of the cold-inducible promoter in plants. Biochemistry (Moscow), 2013, 78(4): 342-354.
doi: 10.1134/S0006297913040032
[1] 蒋慧慧, 王强, 饶志明, 张显. 酿酒酵母启动子工程研究进展*[J]. 中国生物工程杂志, 2023, 43(11): 78-91.
[2] 侯思佳,张倩倩,孙振美,陈静,孟剑桥,梁丹,邬荣领,郭允倩. WIND转录因子在植物响应伤口胁迫和器官生长发育中的研究进展*[J]. 中国生物工程杂志, 2022, 42(4): 85-92.
[3] 刘相致,程驰,赵悦,汪超俊,张颖,薛闯. 里氏木霉中纤维素酶的合成诱导及调控*[J]. 中国生物工程杂志, 2022, 42(10): 93-104.
[4] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[5] 卜恺璇,周翠霞,路福平,朱传合. 细菌转录起始调控机制*[J]. 中国生物工程杂志, 2021, 41(11): 89-99.
[6] 赵久梅,王哲,李学英. 调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的作用*[J]. 中国生物工程杂志, 2021, 41(10): 62-72.
[7] 朱亚鑫, 段艳婷, 高宇豪, 王籍阅, 张晓梅, 张晓娟, 徐国强, 史劲松, 许正宏. 不同D/L单体比γ-聚谷氨酸的合成与调控[J]. 中国生物工程杂志, 2021, 41(1): 1-11.
[8] 玄美娟,张晓云,高莹,高丽影,吴佳婧,马梅,王艳梅,寇航,路福平,黎明. 大肠杆菌糖酵解途径和三羧酸循环启动子的表征及其应用 *[J]. 中国生物工程杂志, 2020, 40(6): 20-30.
[9] 王天柱,吴庆,张宁,王冬杰,许洲,罗伟,杜宗君. 鱼类黑色素合成及信号通路的研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 84-93.
[10] 胡益波,皮畅钰,张哲,向柏宇,夏立秋. 丝状真菌蛋白表达系统研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 94-104.
[11] 安明晖,田文,韩晓旭,尚红. 表达HIV单链抗体的重组乳酸杆菌的构建及表型分析 *[J]. 中国生物工程杂志, 2019, 39(10): 1-8.
[12] 史超硕,李登科,曹雪,袁航,张钰文,于江悦,路福平,李玉. 两个不同启动子及其组合对碱性蛋白酶AprE异源表达的影响 *[J]. 中国生物工程杂志, 2019, 39(10): 17-23.
[13] 黄宇,黄书婷,张夕梅,刘堰. 稀有鮈鲫HSP70基因启动子的克隆及功能分析[J]. 中国生物工程杂志, 2019, 39(10): 9-16.
[14] 赵悦,吴昊,乔建军. 细菌细胞壁生长调控机制研究进展 *[J]. 中国生物工程杂志, 2018, 38(8): 92-99.
[15] 李亚芳,赵颖慧,刘赛宝,王伟,曾为俊,王金泉,陈洪岩,孟庆文. 鸡OV启动子表达HA对禽流感病毒攻击提供完全保护 *[J]. 中国生物工程杂志, 2018, 38(7): 67-74.