Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (10): 62-71    DOI: 10.13523/j.cb.2305012
综述     
非洲猪瘟新型诊断方法研究进展*
张圆圆1,靳家鑫1,赵旭阳1,张帅1,刘月月2,李祥林3,孙爱军1,林树乾2,**(),庄国庆1,**()
1 河南农业大学动物医学院 国家动物免疫学国际联合研究中心 郑州 450046
2 山东省农业科学院家禽研究所 动物保健品山东省工程研究中心 济南 250100
3 龙口市下丁家镇畜牧兽医站 烟台 265719
Research Progress of Novel Diagnostic Methods of African Swine Fever
ZHANG Yuan-yuan1,JIN Jia-xin1,ZHAO Xu-yang1,ZHANG Shuai1,LIU Yue-yue2,LI Xiang-lin3,SUN Ai-jun1,LIN Shu-qian2,**(),ZHUANG Guo-qing1,**()
1 International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
2 The Shandong Animal Health Products Research Center, Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan 250100, China
3 Animal Husbandry and Veterinary Station of Xiadingjia Town of Longkou City, Yantai 265719, China
 全文: PDF(573 KB)   HTML
摘要:

非洲猪瘟(African swine fever,ASF)是由非洲猪瘟病毒(African swine fever virus,ASFV)感染猪而引起的一种急性、烈性传染病。2018年,我国发生的ASF疫情对养猪业造成了严重经济损失。目前尚无有效药物和疫苗用于治疗和预防ASF,主要通过临床诊断和扑杀感染动物来控制疫情传播。建立快速、精准和高效的诊断方法对于疫病防控至关重要。综述当前国内外ASF诊断方法的研究进展,重点阐述诊断靶标的选择以及病原学、血清学检测方法的研究现状,为ASF新型诊断方法的研发提供参考。

关键词: 非洲猪瘟新型诊断方法诊断靶标疫病防控    
Abstract:

African swine fever (ASF) is a high-mortality infectious disease in pigs caused by the African swine fever virus (ASFV). ASF spreads in more than 40 countries around the world, and the ASF epidemic occurred in China in 2018, which caused serious economic losses to the pig industry. The World Organization for Animal Health (WOAH) lists it as a notifiable animal disease, and China lists it as a Class A infectious disease. Due to the complex genome structure and immune escape mechanism of ASFV, the development of ASF vaccine is difficult. No safe and effective ASF vaccine is available until now, and epidemic prevention and control mainly relies on accurate detection and strict biosecurity measurements. Therefore, the establishment of rapid, accurate and efficient diagnostic methods is essential for ASF prevention and control. In order to promote the research and development of new diagnostic methods to improve detection efficiency and clinical application, the current research progresses of ASF diagnostic methods are reviewed, focusing on the selection of diagnostic targets, as well as the research and development status, and advantages and disadvantages of etiological and serological detection methods. For example, there is introduction of droplet digital PCR, loop-mediated isothermal amplification (LAMP), recombinase polymerase amplification (RPA), CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins system) and other new etiological diagnostic technologies and new serological detection methods that use nanomaterials, screening of dominant epitopes, and multi-antigen epitopes to improve sensitivity and specificity. Overall, this review provides a reference to develop new diagnostic methods for ASF epidemic prevention and control.

Key words: African swine fever    Novel diagnostic methods    Diagnostic targets    Epidemic prevention and control
收稿日期: 2023-05-09 出版日期: 2023-11-02
ZTFLH:  Q78  
基金资助: *山东省重大科技创新工程(2020CXGC010801);河南省重大科技专项(221100110600);河南省重点研发与推广专项(222102110373);河南省重点研发与推广专项(232102311107);河南省自然科学基金(232300421160);河南省高等学校重点科研项目(21A230010)
通讯作者: **电子信箱:shuqianlin@126.com;gqzhuang2008@163.com   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张圆圆
靳家鑫
赵旭阳
张帅
刘月月
李祥林
孙爱军
林树乾
庄国庆

引用本文:

张圆圆, 靳家鑫, 赵旭阳, 张帅, 刘月月, 李祥林, 孙爱军, 林树乾, 庄国庆. 非洲猪瘟新型诊断方法研究进展*[J]. 中国生物工程杂志, 2023, 43(10): 62-71.

ZHANG Yuan-yuan, JIN Jia-xin, ZHAO Xu-yang, ZHANG Shuai, LIU Yue-yue, LI Xiang-lin, SUN Ai-jun, LIN Shu-qian, ZHUANG Guo-qing. Research Progress of Novel Diagnostic Methods of African Swine Fever. China Biotechnology, 2023, 43(10): 62-71.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2305012        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I10/62

[1] Galindo I, Alonso C. African swine fever virus: a review. Viruses, 2017, 9(5): 103.
doi: 10.3390/v9050103
[2] Dixon L K, Sun H, Roberts H. African swine fever. Antiviral Research, 2019, 165: 34-41.
doi: S0166-3542(19)30096-8 pmid: 30836106
[3] 孙爱军, 王芮, 朱潇静, 等. 非洲猪瘟相关检测及猪场生物安全防控研究进展. 中国兽医学报, 2021, 41(5): 1023-1030.
Sun A J, Wang R, Zhu X J, et al. Review on African swine fever-associated detection and pig farm biosecurity control measurement development. Chinese Journal of Veterinary Science, 2021, 41(5): 1023-1030.
[4] 张莎莎, 何忠伟, 刘芳, 等. 国内外非洲猪瘟扑杀补偿机制对比研究. 中国畜牧杂志, 2021, 57(5): 258-262.
Zhang S S, He Z W, Liu F, et al. Comparative study on compensation mechanism of African swine fever culling at home and abroad. Chinese Journal of Animal Science, 2021, 57(5): 258-262.
[5] Kleiboeker S B, Scoles G A, Burrage T G, et al. African swine fever virus replication in the midgut epithelium is required for infection of Ornithodoros ticks. Journal of Virology, 1999, 73(10): 8587-8598.
pmid: 10482612
[6] Wang N, Zhao D M, Wang J L, et al. Architecture of African swine fever virus and implications for viral assembly. Science, 2019, 366(6465): 640-644.
doi: 10.1126/science.aaz1439 pmid: 31624094
[7] 赵旭阳, 樊帅, 靳家鑫, 等. 非洲猪瘟病毒增殖过程中主要蛋白研究进展. 中国动物传染病学报, 1-11. DOI: 10.19958/j.cnki.cn31-2031/s.20220512.002.
doi: 10.19958/j.cnki.cn31-2031/s.20220512.002
Zhao X Y, Fan S, Jin J X, et al. Research progress on major proteins of African swine fever in virus propagation. Chinese Journal of Animal Infectious Diseases, 1-11. DOI: 10.19958/j.cnki.cn31-2031/s.20220512.002.
doi: 10.19958/j.cnki.cn31-2031/s.20220512.002
[8] Dixon L K, Chapman D A G, Netherton C L, et al. African swine fever virus replication and genomics. Virus Research, 2013, 173(1): 3-14.
doi: 10.1016/j.virusres.2012.10.020 pmid: 23142553
[9] 赵旭阳, 靳家鑫, 路闻龙, 等. 非洲猪瘟病毒免疫逃逸分子机制研究进展. 畜牧兽医学报, 2022, 53(7): 2074-2082.
Zhao X Y, Jin J X, Lu W L, et al. Advances in the molecular mechanism of immune escape of African swine fever virus. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7): 2074-2082.
[10] Urbano A C, Ferreira F. African swine fever control and prevention: an update on vaccine development. Emerging Microbes & Infections, 2022, 11(1): 2021-2033.
[11] Blome S, Franzke K, Beer M. African swine fever: a review of current knowledge. Virus Research, 2020, 287: 198099.
doi: 10.1016/j.virusres.2020.198099
[12] Qu H L, Ge S Q, Zhang Y Q, et al. A systematic review of genotypes and serogroups of African swine fever virus. Virus Genes, 2022, 58(2): 77-87.
doi: 10.1007/s11262-021-01879-0 pmid: 35061204
[13] Agüero M, Fernández J, Romero L, et al. Highly sensitive PCR assay for routine diagnosis of African swine fever virus in clinical samples. Journal of Clinical Microbiology, 2003, 41(9): 4431-4434.
doi: 10.1128/JCM.41.9.4431-4434.2003 pmid: 12958285
[14] Wu X L, Xiao L, Lin H, et al. Development and application of a droplet digital polymerase chain reaction (ddPCR) for detection and investigation of African swine fever virus. Canadian journal of veterinary research, 2018, 82(1): 70-74.
[15] Wang D G, Yu J H, Wang Y Z, et al. Development of a real-time loop-mediated isothermal amplification (LAMP) assay and visual LAMP assay for detection of African swine fever virus (ASFV). Journal of Virological Methods, 2020, 276: 113775.
doi: 10.1016/j.jviromet.2019.113775
[16] Wang Y, Xu L Z, Noll L, et al. Development of a real-time PCR assay for detection of African swine fever virus with an endogenous internal control. Transboundary and Emerging Diseases, 2020, 67(6): 2446-2454.
doi: 10.1111/tbed.v67.6
[17] Yin D, Geng R H, Lv H, et al. Development of real-time PCR based on A137R gene for the detection of African swine fever virus. Frontiers in Veterinary Science, 2021, 8: 753967.
doi: 10.3389/fvets.2021.753967
[18] Tubiash H S. Quantity production of leukocyte cultures for use in hemadsorption tests with African swine fever virus. American Journal of Veterinary Research, 1963, 24: 381-384.
pmid: 13994659
[19] Wang F X, Zhang H, Hou L N, et al. Advance of African swine fever virus in recent years. Research in Veterinary Science, 2021, 136: 535-539.
doi: 10.1016/j.rvsc.2021.04.004 pmid: 33882382
[20] 李静, 张蕾, 董春娜, 等. 我国非洲猪瘟病毒检测技术专利分析. 病毒学报, 2023, 39(1): 222-230.
Li J, Zhang L, Dong C N, et al. Patent status of detection technology for African swine fever virus in China. Chinese Journal of Virology, 2023, 39(1): 222-230.
[21] Singh C, Roy-Chowdhuri S. Quantitative real-time PCR: recent advances. Methods in Molecular Biology, 2016, 1392: 161-176.
doi: 10.1007/978-1-4939-3360-0_15 pmid: 26843055
[22] Zhu J H, Jian W J, Huang Y F, et al. Development and application of a duplex droplet digital polymerase chain reaction assay for detection and differentiation of EP402R-deleted and wild-type African swine fever virus. Frontiers in Veterinary Science, 2022, 9: 905706.
doi: 10.3389/fvets.2022.905706
[23] Soroka M, Wasowicz B, Rymaszewska A. Loop-mediated isothermal amplification (LAMP): the better sibling of PCR. Cells, 2021, 10(8): 1931.
doi: 10.3390/cells10081931
[24] Mao L J, Ying J X, Selekon B, et al. Development and characterization of recombinase-based isothermal amplification assays (RPA/RAA) for the rapid detection of monkeypox virus. Viruses, 2022, 14(10): 2112.
doi: 10.3390/v14102112
[25] Yang B, Shi Z W, Ma Y, et al. LAMP assay coupled with CRISPR/Cas12a system for portable detection of African swine fever virus. Transboundary and Emerging Diseases, 2022, 69(4): e216-e223.
[26] Chaouch M. Loop-mediated isothermal amplification (LAMP): an effective molecular point-of-care technique for the rapid diagnosis of coronavirus SARS-CoV-2. Reviews in Medical Virology, 2021, 31(6): e2215.
doi: 10.1002/rmv.2215 pmid: 33476080
[27] Cao G H, Qiu Y, Long K Y, et al. Carbon nanodots combined with loop-mediated isothermal amplification (LAMP) for detection of African swine fever virus (ASFV). Microchimica Acta, 2022, 189(9): 342.
doi: 10.1007/s00604-022-05390-7
[28] Fan X X, Li L, Zhao Y G, et al. Clinical validation of two recombinase-based isothermal amplification assays (RPA/RAA) for the rapid detection of African swine fever virus. Frontiers in Microbiology, 2020, 11: 1696.
doi: 10.3389/fmicb.2020.01696 pmid: 32793160
[29] Miao F M, Zhang J Y, Li N, et al. Rapid and sensitive recombinase polymerase amplification combined with lateral flow strip for detecting African swine fever virus. Frontiers in Microbiology, 2019, 10: 1004.
doi: 10.3389/fmicb.2019.01004 pmid: 31156571
[30] Tian T, Qiu Z Q, Jiang Y Z, et al. Exploiting the orthogonal CRISPR-Cas12a/Cas13a trans-cleavage for dual-gene virus detection using a handheld device. Biosensors and Bioelectronics, 2022, 196: 113701.
doi: 10.1016/j.bios.2021.113701
[31] Lin M, Yue H H, Tian T, et al. Glycerol additive boosts 100-fold sensitivity enhancement for one-pot RPA-CRISPR/Cas12a assay. Analytical Chemistry, 2022, 94(23): 8277-8284.
doi: 10.1021/acs.analchem.2c00616
[32] 程晶, 刘文晓, 王晓玥, 等. 非洲猪瘟诊断方法研究进展. 中国畜牧兽医, 2022, 49(5): 1985-1993.
doi: 10.16431/j.cnki.1671-7236.2022.05.040
Cheng J, Liu W X, Wang X Y, et al. Research progress on development of diagnostic methods of African swine fever. China Animal Husbandry & Veterinary Medicine, 2022, 49(5): 1985-1993.
doi: 10.16431/j.cnki.1671-7236.2022.05.040
[33] Herrera L R M, Bisa E P. In silico analysis of highly conserved cytotoxic T-cell epitopes in the structural proteins of African swine fever virus. Veterinary World, 2021, 14(10): 2625-2633.
doi: 10.14202/vetworld.2021.2625-2633 pmid: 34903918
[34] Wang P F, Liu C G, Wang S D, et al. Production and application of mouse monoclonal antibodies targeting linear epitopes in pB602L of African swine fever virus. Archives of Virology, 2022, 167(2): 415-424.
doi: 10.1007/s00705-021-05335-0 pmid: 34984562
[35] Zhang S, Wang R, Zhu X J, et al. Identification and characterization of a novel epitope of ASFV-encoded dUTPase by monoclonal antibodies. Viruses, 2021, 13(11): 2175.
doi: 10.3390/v13112175
[36] Lithgow P, Takamatsu H, Werling D, et al. Correlation of cell surface marker expression with African swine fever virus infection. Veterinary Microbiology, 2014, 168(2-4): 413-419.
doi: 10.1016/j.vetmic.2013.12.001 pmid: 24398227
[37] Petrovan V, Yuan F F, Li Y H, et al. Development and characterization of monoclonal antibodies against p 30 protein of African swine fever virus. Virus Research, 2019, 269: 197632.
doi: 10.1016/j.virusres.2019.05.010
[38] Murgia M V, Mogler M, Certoma A, et al. Evaluation of an African swine fever (ASF) vaccine strategy incorporating priming with an alphavirus-expressed antigen followed by boosting with attenuated ASF virus. Archives of Virology, 2019, 164(2): 359-370.
doi: 10.1007/s00705-018-4071-8 pmid: 30367292
[39] Zhou G J, Shi Z W, Luo J C, et al. Preparation and epitope mapping of monoclonal antibodies against African swine fever virus P30 protein. Applied Microbiology and Biotechnology, 2022, 106(3): 1199-1210.
doi: 10.1007/s00253-022-11784-7 pmid: 35089400
[40] Wang A P, Jiang M, Liu H L, et al. Development and characterization of monoclonal antibodies against the N-terminal domain of African swine fever virus structural protein, p54. International Journal of Biological Macromolecules, 2021, 180: 203-211.
doi: 10.1016/j.ijbiomac.2021.03.059 pmid: 33737177
[41] Petrovan V, Murgia M V, Wu P, et al. Epitope mapping of African swine fever virus (ASFV) structural protein, p54. Virus Research, 2020, 279: 197871.
doi: 10.1016/j.virusres.2020.197871
[42] Yin D, Geng R H, Shao H X, et al. Identification of novel linear epitopes in P 72 protein of African swine fever virus recognized by monoclonal antibodies. Frontiers in Microbiology, 2022, 13: 1055820.
doi: 10.3389/fmicb.2022.1055820
[43] Miao C, Yang S C, Shao J J, et al. Identification of p72 epitopes of African swine fever virus and preliminary application. Frontiers in Microbiology, 2023, 14: 1126794.
doi: 10.3389/fmicb.2023.1126794
[44] Ren D N, Ding P Y, Liu S Y, et al. Development and characterization of recombinant ASFV CD2v protein nanoparticle-induced monoclonal antibody. International Journal of Biological Macromolecules, 2022, 209(Pt A): 533-541.
doi: 10.1016/j.ijbiomac.2022.03.069
[45] Liu S Y, Ding P Y, Du Y K, et al. Development and characterization of monoclonal antibodies against the extracellular domain of African swine fever virus structural protein, CD2v. Frontiers in Microbiology, 2022, 13: 1056117.
doi: 10.3389/fmicb.2022.1056117
[46] Jia R, Zhang G P, Bai Y L, et al. Identification of linear B cell epitopes on CD2V protein of African swine fever virus by monoclonal antibodies. Microbiology Spectrum, 2022, 10(2): e0105221.
doi: 10.1128/spectrum.01052-21
[47] Yu X X, Zhu X J, Chen X Y, et al. Establishment of a blocking ELISA detection method for against African swine fever virus p30 antibody. Frontiers in Veterinary Science, 2021, 8: 781373.
doi: 10.3389/fvets.2021.781373
[48] 曹琛福, 梁云浩, 陶虹, 等. 非洲猪瘟病毒p54基因的原核表达及其抗体的间接ELISA检测方法的建立. 动物医学进展, 2014, 35(2): 6-10.
Cao C F, Liang Y H, Tao H, et al. Prokaryotic expression of P 54 gene of African swine fever virus and establishment of indirect ELISA for detection of its antibody against p54. Progress in Veterinary Medicine, 2014, 35(2): 6-10.
[49] Wang C X, Qiu S Y, Xiao Y, et al. Development of a blocking ELISA kit for detection of ASFV antibody based on a monoclonal antibody against full length p72. Journal of AOAC International, 2022, 105(5): 1428-1436.
doi: 10.1093/jaoacint/qsac050
[50] Zhang X Y, Liu X Y, Wu X D, et al. A colloidal gold test strip assay for the detection of African swine fever virus based on two monoclonal antibodies against P30. Archives of Virology, 2021, 166(3): 871-879.
doi: 10.1007/s00705-020-04915-w pmid: 33495899
[51] Geng R, Sun Y N, Li R, et al. Development of a p72 trimer-based colloidal gold strip for detection of antibodies against African swine fever virus. Applied Microbiology and Biotechnology, 2022, 106(7): 2703-2714.
doi: 10.1007/s00253-022-11851-z pmid: 35291024
[52] Li D X, Zhang Q, Liu Y T, et al. Indirect ELISA using multi-antigenic dominants of p30, p54 and p 72 recombinant proteins to detect antibodies against African swine fever virus in pigs. Viruses, 2022, 14(12): 2660.
doi: 10.3390/v14122660
[53] Zhu W Z, Meng K W, Zhang Y P, et al. Lateral flow assay for the detection of African swine fever virus antibodies using gold nanoparticle-labeled acid-treated p72. Frontiers in Chemistry, 2022, 9: 804981.
doi: 10.3389/fchem.2021.804981
[54] 文雪霞, 陈化兰, 熊永忠, 等. 抗原表位鉴定方法的研究进展. 中国畜牧兽医, 2012, 39(7): 66-70.
Wen X X, Chen H L, Xiong Y Z, et al. Research advance in epitope identification methods. China Animal Husbandry & Veterinary Medicine, 2012, 39(7): 66-70.
[55] Xu L Y, Cao C F, Yang Z Y, et al. Identification of a conservative site in the African swine fever virus p 54 protein and its preliminary application in a serological assay. Journal of Veterinary Science, 2022, 23(4): e55.
doi: 10.4142/jvs.21134
[56] Zhang X X, Guo J, Wang L X, et al. Development and evaluation of multi-epitope protein p 72 (MeP72) for the serodiagnosis of African swine fever. Acta Virologica, 2021, 65(3): 273-278.
doi: 10.4149/av_2021_304
[57] 张蕾, 董春娜, 李静, 等. 非洲猪瘟病毒间接ELISA抗体检测方法的建立. 病毒学报, 2020, 36(4): 670-674.
Zhang L, Dong C N, Li J, et al. Development of an ELISA based on synthetic peptides for detection of antibodies against the African swine fever virus. Chinese Journal of Virology, 2020, 36(4): 670-674.
[58] de Puig H, Bosch I, Gehrke L, et al. Challenges of the nano-bio interface in lateral flow and dipstick immunoassays. Trends in Biotechnology, 2017, 35(12): 1169-1180.
doi: S0167-7799(17)30231-7 pmid: 28965747
[59] Wan Y, Shi Z W, Peng G, et al. Development and application of a colloidal-gold dual immunochromatography strip for detecting African swine fever virus antibodies. Applied Microbiology and Biotechnology, 2022, 106(2): 799-810.
doi: 10.1007/s00253-021-11706-z
[60] Wang Q J, Tian Z C, Yang J F, et al. An improved luciferase immunosorbent assay for ultrasensitive detection of antibodies against African swine fever virus. Frontiers in Microbiology, 2022, 13: 1013678.
doi: 10.3389/fmicb.2022.1013678
[61] Li C F, Zou Z, Lv C J, et al. Flow cytometry-based multiplexing antibody detection for diagnosis of African swine fever virus. Analytica Chimica Acta, 2022, 1225: 340244.
doi: 10.1016/j.aca.2022.340244
[62] 徐志远, 施远国, 陈兵, 等. 非洲猪瘟病毒荧光量子点检测试纸条的研制. 中国兽医科学, 2023, 53(4): 419-425.
Xu Z Y, Shi Y G, Chen B, et al. Development of fluorescent quantum dots test strip for African swine fever virus. Chinese Veterinary Science, 2023, 53(4): 419-425.
[63] Liu Y N, Xie Z H, Li Y, et al. Evaluation of an I177L gene-based five-gene-deleted African swine fever virus as a live attenuated vaccine in pigs. Emerging Microbes & Infections, 2023, 12(1): 2148560.
[64] Qi X L, Feng T, Ma Z, et al. Deletion of DP148R, DP71L, and DP96R attenuates African swine fever virus, and the mutant strain confers complete protection against homologous challenges in pigs. Journal of Virology, 2023, 97(4): e0024723.
doi: 10.1128/jvi.00247-23
[65] Pérez-Núñez D, Sunwoo S Y, García-Belmonte R, et al. Recombinant African swine fever virus arm/07/CBM/c2 lacking CD2v and A238L is attenuated and protects pigs against virulent Korean paju strain. Vaccines, 2022, 10(12): 1992.
doi: 10.3390/vaccines10121992
[66] Hemmink J D, Khazalwa E M, Abkallo H M, et al. Deletion of the CD2v gene from the genome of ASFV-Kenya-IX-1033 partially reduces virulence and induces protection in pigs. Viruses, 2022, 14(9): 1917.
doi: 10.3390/v14091917
[67] Sun E C, Zhang Z J, Wang Z L, et al. Emergence and prevalence of naturally occurring lower virulent African swine fever viruses in domestic pigs in China in 2020. Science China Life Sciences, 2021, 64(5): 752-765.
doi: 10.1007/s11427-021-1904-4
[68] Cao Y L, Han D M, Zhang Y J, et al. Identification of one novel epitope targeting p54 protein of African swine fever virus using monoclonal antibody and development of a capable ELISA. Research in Veterinary Science, 2021, 141: 19-25.
doi: 10.1016/j.rvsc.2021.10.008 pmid: 34638027
[69] 马俊, 王志远, 梁杏玲, 等. 基于非洲猪瘟病毒p30与p54蛋白表位串联多肽的间接ELISA抗体检测方法的建立. 畜牧兽医学报, 2022, 53(12): 4325-4336.
Ma J, Wang Z Y, Liang X L, et al. Development of an indirect ELISA antibodies detection method on tandem-epitope peptide of African swine fever virus p30 and p54 proteins. Acta Veterinaria et Zootechnica Sinica, 2022, 53(12): 4325-4336.
[70] Correia B E, Ban Y E A, Holmes M A, et al. Computational design of epitope-scaffolds allows induction of antibodies specific for a poorly immunogenic HIV vaccine epitope. Structure, 2010, 18(9): 1116-1126.
doi: 10.1016/j.str.2010.06.010 pmid: 20826338
[71] Correia B E, Bates J T, Loomis R J, et al. Proof of principle for epitope-focused vaccine design. Nature, 2014, 507(7491): 201-206.
doi: 10.1038/nature12966
[1] 李秋霞 腾达 童德文 杨雅麟 田子罡 王建华. 非洲猪瘟病毒VP73基因主要抗原表位区的融合原核表达[J]. 中国生物工程杂志, 2010, 30(02): 60-65.