Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (7): 77-87    DOI: 10.13523/j.cb.2211057
综述     
RNA结合蛋白质谱鉴定技术研究进展*
孙若航,陈瑞冰**()
天津大学药物科学与技术学院 天津 300072
Advances in Ide.pngication of RNA-binding Proteins Based on Mass Spectrometry
Ruo-hang SUN,Rui-bing CHEN**()
School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
 全文: PDF(2009 KB)   HTML
摘要:

RNA结合蛋白在细胞中通过与RNA结合参与调控RNA的整个生命周期,在基因表达和生命进程中发挥着重要作用。RNA和蛋白质的结合异常与多种疾病的发生与发展密切相关,因此,探索RNA-蛋白质相互作用对研究潜在的生物功能和临床病理机制至关重要。近年来,随着鉴定技术的不断进步与革新,许多新的非经典RNA结合蛋白不断被发现。这些RNA结合蛋白大多数缺乏已知的RNA结合结构域,RNA与蛋白质之间复杂、多样的相互作用关系仍需进一步探究。从高通量鉴定和靶向鉴定两个方面,对基于质谱分析的RNA结合蛋白鉴定技术的最新进展进行综述,并着重讨论其技术原理、应用领域和优缺点,以期为更好地探索RNA-蛋白质相互作用的生物学功能及其在临床疾病中的作用机制提供参考。

关键词: RNA结合蛋白RNA-蛋白质相互作用蛋白质组学质谱    
Abstract:

RNA-binding proteins (RBPs) can bind RNAs through RNA-binding domains and regulate the fate or functions of their bound RNAs. RBPs are responsible for all the steps of RNA metabolism throughout their life cycle and are involved in many other cellular processes related to cell’s survival, replication, and adaption to environmental changes. RNA-protein interactions are essential to cell homeostasis, and their defects are associated with various diseases. Therefore, the characterization of RBPs is crucial to depict their functions and underlying molecular mechanisms. Recently, several methods have been developed and extensively applied to ide.pngy RBPs, uncovering many previously unannotated RBPs. However, the majority of the newly discovered RBPs lack classical RNA-binding domains, thus highlighting the complexity and diversity of RNA-protein interactions. Here, the progress in the ide.pngication of RBPs based on mass spectrometry was reviewed, from two aspects: high-throughput ide.pngication and targeted ide.pngication. Moreover, their technical principles, application areas, and strengths and limitations were discussed, providing new perspectives to better understand the biological significance and clinical implications of RNA-protein interactions.

Key words: RNA-binding protein    RNA-protein interaction    Proteomics    Mass spectrometry
收稿日期: 2021-11-29 出版日期: 2023-08-03
ZTFLH:  Q71  
基金资助: 国家自然科学基金(21974094)
通讯作者: **电子信箱:rbchen@tju.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
孙若航
陈瑞冰

引用本文:

孙若航, 陈瑞冰. RNA结合蛋白质谱鉴定技术研究进展*[J]. 中国生物工程杂志, 2023, 43(7): 77-87.

Ruo-hang SUN, Rui-bing CHEN. Advances in Ide.pngication of RNA-binding Proteins Based on Mass Spectrometry. China Biotechnology, 2023, 43(7): 77-87.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2211057        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I7/77

图1  RIC策略示意图
图2  基于RNA标记的高通量RBPs鉴定技术示意图
图3  基于RNA理化性质的高通量鉴定技术示意图
图4  体外靶向RBPs鉴定技术示意图
图5  体内靶向RBPs鉴定技术示意图
方法 应用 优势 局限性 参考文献
RIC Poly(A)-RBPome 体内,无需核苷酸标记 交联,只适用于poly(A)RNA [12,14???? -19]
RBR-ID RBPome 体内,无需核苷酸标记,适用于
各种RNA
交联,假阳性和假阴性 [21]
RICK、CARIC RBPome 体内,适用于各种RNA 交联,核苷酸标记 [22-23]
PP探针RNA标记 RBPome 体内,体外RNA标记,适用于
各种RNA
交联,非特异性富集 [24]
基于AGPC的方法 RBPome 体内,无需核苷酸标记,适用于
各种RNA,覆盖率高
交联,非特异性富集 [25???-29]
TRAPP RBPome 体内,无需核苷酸标记,适用于
各种RNA
交联,非特异性富集 [30]
R-DeeP、DIF-FRAC RBPome 体内,无需核苷酸标记,无需交联 分析复杂,假阳性和假阴性 [31-32]
RNA沉降技术 MALAT1、SLERT RNA-蛋白质结合力强 体外,高丰度蛋白干扰 [4,34]
蛋白微阵列 小核仁RNA、
SNORD50A等
无需裂解细胞,灵敏度高 体外,重组蛋白质性质影响鉴定结果 [35,36]
CHART、ChIRP、RAP NEAT1、MALAT1、Xist 体内,内源性,特异性强 交联,探针设计复杂,样本需求量大 [37??-40]
MS2-BioTRAP 淋巴增强因子-1(lymphoid enhancer factor-1)mRNA 体内 RNA、蛋白质外源表达 [41]
RAPID Zika病毒RNA 体内,直接标记蛋白质 RNA、蛋白质外源表达 [42]
TOBAP-MS HULC 体内,直接标记蛋白质,无需蛋白质
外源表达
RNA外源表达 [43]
CBRIP U1小核RNA 体内 交联,gRNA设计,间接标记蛋白质 [44]
CRUIS NORAD 体内,直接标记蛋白质 gRNA设计 [45]
CARPID Xist、DANCR、MALAT1 体内,直接标记蛋白质 gRNA设计 [46]
表1  RBPs的高通量和靶向鉴定方法
[1] Ramanathan M, Porter D F, Khavari P A. Methods to study RNA-protein interactions. Nature Methods, 2019, 16(3): 225-234.
doi: 10.1038/s41592-019-0330-1 pmid: 30804549
[2] Hentze M W, Castello A, Schwarzl T, et al. A brave new world of RNA-binding proteins. Nature Reviews Molecular Cell Biology, 2018, 19(5): 327-341.
doi: 10.1038/nrm.2017.130 pmid: 29339797
[3] Bou-Nader C, Gordon J M, Henderson F E, et al. The search for a PKR code-differential regulation of protein kinase R activity by diverse RNA and protein regulators. RNA, 2019, 25(5): 539-556.
doi: 10.1261/rna.070169.118 pmid: 30770398
[4] Chen R B, Liu Y, Zhuang H, et al. Quantitative proteomics reveals that long non-coding RNA MALAT1 interacts with DBC1 to regulate p53 acetylation. acetylation. Nucleic Acids Research, 2017, 45(17): 9947-9959.
[5] Li D, Liu X F, Zhou J, et al. Long noncoding RNA HULC modulates the phosphorylation of YB-1 through serving as a scaffold of extracellular signal-regulated kinase and YB-1 to enhance hepatocarcinogenesis. Hepatology, 2017, 65(5): 1612-1627.
doi: 10.1002/hep.29010 pmid: 28027578
[6] Gebauer F, Schwarzl T, Valcárcel J, et al. RNA-binding proteins in human genetic disease. Nature Reviews Genetics, 2021, 22(3): 185-198.
doi: 10.1038/s41576-020-00302-y pmid: 33235359
[7] Wu X Q, Xu L. The RNA-binding protein HuR in human cancer: a friend or foe? Advanced Drug Delivery Reviews, 2022, 184: 114179.
doi: 10.1016/j.addr.2022.114179
[8] Wang X J, Liu R L, Zhu W C, et al. UDP-glucose accelerates SNAI 1 mRNA decay and impairs lung cancer metastasis. Nature, 2019, 571(7763): 127-131.
doi: 10.1038/s41586-019-1340-y
[9] Ule J, Jensen K B, Ruggiu M, et al. CLIP ide.pngies Nova-regulated RNA networks in the brain. Science, 2003, 302(5648): 1212-1215.
doi: 10.1126/science.1090095
[10] Nechay M, Kleiner R E. High-throughput approaches to profile RNA-protein interactions. Current Opinion in Chemical Biology, 2020, 54: 37-44.
doi: S1367-5931(19)30121-8 pmid: 31812895
[11] Lorenz D A, Her H L, Shen K A, et al. Multiplexed transcriptome discovery of RNA-binding protein binding sites by antibody-barcode eCLIP. Nature Methods, 2023, 20(1): 65-69.
doi: 10.1038/s41592-022-01708-8 pmid: 36550273
[12] Castello A, Fischer B, Eichelbaum K, et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell, 2012, 149(6): 1393-1406.
doi: 10.1016/j.cell.2012.04.031 pmid: 22658674
[13] Knörlein A, Sarnowski C P, de Vries T, et al. Nucleotide-amino acid π-stacking interactions initiate photo cross-linking in RNA-protein complexes. Nature Communications, 2022, 13(1): 2719.
doi: 10.1038/s41467-022-30284-w pmid: 35581222
[14] Kwon S C, Yi H, Eichelbaum K, et al. The RNA-binding protein repertoire of embryonic stem cells. Nature Structural & Molecular Biology, 2013, 20(9): 1122-1130.
doi: 10.1038/nsmb.2638
[15] Panhale A, Richter F M, Ramírez F, et al. CAPRI enables comparison of evolutionarily conserved RNA interacting regions. Nature Communications, 2019, 10(1): 2682.
doi: 10.1038/s41467-019-10585-3 pmid: 31213602
[16] Despic V, Dejung M, Gu M T, et al. Dynamic RNA-protein interactions underlie the zebrafish maternal-to-zygotic transition. Genome Research, 2017, 27(7): 1184-1194.
doi: 10.1101/gr.215954.116 pmid: 28381614
[17] Matia-González A M, Laing E E, Gerber A P. Conserved mRNA-binding proteomes in eukaryotic organisms. Nature Structural & Molecular Biology, 2015, 22(12): 1027-1033.
doi: 10.1038/nsmb.3128
[18] Beckmann B M, Horos R, Fischer B, et al. The RNA-binding proteomes from yeast to man harbour conserved enigmRBPs. Nature Communications, 2015, 6: 10127.
doi: 10.1038/ncomms10127 pmid: 26632259
[19] Reichel M, Liao Y L, Rettel M, et al. In planta determination of the mRNA-binding proteome of Arabidopsis etiolated seedlings. The Plant Cell, 2016, 28(10): 2435-2452.
doi: 10.1105/tpc.16.00562
[20] Mestre-Farràs N, Guerrero S, Bley N, et al. Melanoma RBPome ide.pngication reveals PDIA 6 as an unconventional RNA-binding protein involved in metastasis. Nucleic Acids Research, 2022, 50(14): 8207-8225.
doi: 10.1093/nar/gkac605 pmid: 35848924
[21] He C S, Sidoli S, Warneford-Thomson R, et al. High-resolution mapping of RNA-binding regions in the nuclear proteome of embryonic stem cells. Molecular Cell, 2016, 64(2): 416-430.
doi: S1097-2765(16)30586-X pmid: 27768875
[22] Bao X C, Guo X P, Yin M H, et al. Capturing the interactome of newly transcribed RNA. Nature Methods, 2018, 15(3): 213-220.
doi: 10.1038/nmeth.4595 pmid: 29431736
[23] Huang R B, Han M T, Meng L Y, et al. Transcriptome-wide discovery of coding and noncoding RNA-binding proteins. Proceedings of the National Academy of Sciences, 2018, 115(17): E3879-E3887.
[24] Zhang Z, Liu T, Dong H Y, et al. An RNA tagging approach for system-wide RNA-binding proteome profiling and dynamics investigation upon transcription inhibition. Nucleic Acids Research, 2021, 49(11): e65.
doi: 10.1093/nar/gkab156 pmid: 33693821
[25] Trendel J, Schwarzl T, Horos R, et al. The human RNA-binding proteome and its dynamics during translational arrest. Cell, 2019, 176(1-2): 391-403, e19.
doi: S0092-8674(18)31463-6 pmid: 30528433
[26] Queiroz R M L, Smith T, Villanueva E, et al. Comprehensive ide.pngication of RNA-protein interactions in any organism using orthogonal organic phase separation (OOPS). Nature Biotechnology, 2019, 37(2): 169-178.
doi: 10.1038/s41587-018-0001-2 pmid: 30607034
[27] Urdaneta E C, Vieira-Vieira C H, Hick T, et al. Purification of cross-linked RNA-protein complexes by phenol-toluol extraction. Nature Communications, 2019, 10: 990.
doi: 10.1038/s41467-019-08942-3 pmid: 30824702
[28] Yan S, Zhao D Q, Wang C Q, et al. Characterization of RNA-binding proteins in the cell nucleus and cytoplasm. Analytica Chimica Acta, 2021, 1168: 338609.
doi: 10.1016/j.aca.2021.338609
[29] Luo H X, Tang W, Liu H Y, et al. Photocatalytic chemical crosslinking for profiling RNA-protein interactions in living cells. Angewandte Chemie International Edition, 2022, 61(27): e202202008.
[30] Shchepachev V, Bresson S, Spanos C, et al. Defining the RNA interactome by total RNA-associated protein purification. Molecular Systems Biology, 2019, 15(4): e8689.
doi: 10.15252/msb.20188689
[31] Caudron-Herger M, Rusin S F, Adamo M E, et al. R-DeeP: proteome-wide and quantitative ide.pngication of RNA-dependent proteins by density gradient ultracentrifugation. Molecular Cell, 2019, 75(1): 184-199, e10.
doi: S1097-2765(19)30310-7 pmid: 31076284
[32] Mallam A L, Sae-Lee W, Schaub J M, et al. Systematic discovery of endogenous human ribonucleoprotein complexes. Cell Reports, 2019, 29(5): 1351-1368, e5.
doi: S2211-1247(19)31257-4 pmid: 31665645
[33] Rajagopal V, Loubal A S, Engel N, et al. Proteome-wide ide.pngication of RNA-dependent proteins in lung cancer cells. Cancers, 2022, 14(24): 6109.
doi: 10.3390/cancers14246109
[34] Xing Y H, Yao R W, Zhang Y, et al. SLERT regulates DDX21 rings associated with Pol I transcription. Cell, 2017, 169(4): 664-678, e16.
doi: 10.1016/j.cell.2017.04.011
[35] Kretz M, Siprashvili Z, Chu C, et al. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature, 2013, 493(7431): 231-235.
doi: 10.1038/nature11661
[36] Siprashvili Z, Webster D E, Johnston D, et al. The noncoding RNAs SNORD50A and SNORD50B bind K-Ras and are recurrently deleted in human cancer. Nature Genetics, 2016, 48(1): 53-58.
doi: 10.1038/ng.3452 pmid: 26595770
[37] West J, Davis C P, Sunwoo H, et al. The long noncoding RNAs NEAT1 and MALAT 1 bind active chromatin sites. Molecular Cell, 2014, 55(5): 791-802.
doi: 10.1016/j.molcel.2014.07.012
[38] Chu C, Zhang Q F C, da Rocha S T, et al. Systematic discovery of Xist RNA binding proteins. Cell, 2015, 161(2): 404-416.
doi: 10.1016/j.cell.2015.03.025 pmid: 25843628
[39] Engreitz J M, Pandya-Jones A, McDonel P, et al. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science, 2013, 341(6147): 1237973.
doi: 10.1126/science.1237973
[40] McHugh C A, Chen C K, Chow A, et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature, 2015, 521(7551): 232-236.
doi: 10.1038/nature14443
[41] Tsai B P, Wang X R, Huang L, et al. Quantitative profiling of in vivo-assembled RNA-protein complexes using a novel integrated proteomic approach. Molecular & Cellular Proteomics, 2011, 10(4): M110.007385.
[42] Ramanathan M, Majzoub K, Rao D S, et al. RNA-protein interaction detection in living cells. Nature Methods, 2018, 15(3): 207-212.
doi: 10.1038/nmeth.4601 pmid: 29400715
[43] Wang C Q, Li Y M, Yan S, et al. Interactome analysis reveals that lncRNA HULC promotes aerobic glycolysis through LDHA and PKM2. Nature Communications, 2020, 11(1): 3162.
doi: 10.1038/s41467-020-16966-3 pmid: 32572027
[44] Chen B W, Shi H Y, Zhang J, et al. CRISPR-based RNA-binding protein mapping in live cells. Biochemical and Biophysical Research Communications, 2021, 583: 79-85.
doi: 10.1016/j.bbrc.2021.10.059 pmid: 34735883
[45] Zhang Z H, Sun W P, Shi T Z, et al. Capturing RNA-protein interaction via CRUIS. Nucleic Acids Research, 2020, 48(9): e52.
doi: 10.1093/nar/gkaa143
[46] Yi W K, Li J Y, Zhu X X, et al. CRISPR-assisted detection of RNA-protein interactions in living cells. Nature Methods, 2020, 17(7): 685-688.
doi: 10.1038/s41592-020-0866-0 pmid: 32572232
[47] Li X Y, Song J H, Yi C Q. Genome-wide mapping of cellular protein-RNA interactions enabled by chemical crosslinking. Genomics, Proteomics & Bioinformatics, 2014, 12(2): 72-78.
[48] Sugimoto Y, König J, Hussain S, et al. Analysis of CLIP and iCLIP methods for nucleotide-resolution studies of protein-RNA interactions. Genome Biology, 2012, 13(8): R67.
doi: 10.1186/gb-2012-13-8-r67
[49] Kramer K, Sachsenberg T, Beckmann B M, et al. Photo-cross-linking and high-resolution mass spectrometry for assignment of RNA-binding sites in RNA-binding proteins. Nature Methods, 2014, 11(10): 1064-1070.
doi: 10.1038/nmeth.3092 pmid: 25173706
[50] Keil P, Wulf A, Kachariya N, et al. Npl3 functions in mRNP assembly by recruitment of mRNP components to the transcription site and their transfer onto the mRNA. Nucleic Acids Research, 2023, 51(2): 831-851.
doi: 10.1093/nar/gkac1206 pmid: 36583366
[51] Castello A, Fischer B, Frese C K, et al. Comprehensive ide.pngication of RNA-binding domains in human cells. Molecular Cell, 2016, 63(4): 696-710.
doi: S1097-2765(16)30287-8 pmid: 27453046
[52] Bae J W, Kwon S C, Na Y, et al. Chemical RNA digestion enables robust RNA-binding site mapping at single amino acid resolution. Nature Structural & Molecular Biology, 2020, 27(7): 678-682.
doi: 10.1038/s41594-020-0436-2
[53] England W E, Wang J T, Chen S W, et al. An atlas of posttranslational modifications on RNA binding proteins. Nucleic Acids Research, 2022, 50(8): 4329-4339.
doi: 10.1093/nar/gkac243 pmid: 35438783
[54] Vieira-Vieira C H, Dauksaite V, Sporbert A, et al. Proteome-wide quantitative RNA-interactome capture ide.pngies phosphorylation sites with regulatory potential in RBM20. Molecular Cell, 2022, 82(11): 2069-2083, e8.
doi: 10.1016/j.molcel.2022.03.024 pmid: 35427468
[55] Raguraman R, Shanmugarama S, Mehta M, et al. Drug delivery approaches for HuR-targeted therapy for lung cancer. Advanced Drug Delivery Reviews, 2022, 180: 114068.
doi: 10.1016/j.addr.2021.114068
[56] Kashikar R, Kotha A K, Shah S, et al. Advances in nanoparticle mediated targeting of RNA binding protein for cancer. Advanced Drug Delivery Reviews, 2022, 185: 114257.
doi: 10.1016/j.addr.2022.114257
[1] 徐颖, 王雪, 王倩倩, 朱云平, 贾辰熙. 小鼠垂体瘤细胞冷暴露后蛋白质甲基化修饰分析*[J]. 中国生物工程杂志, 2023, 43(7): 12-22.
[2] 靳倩, 时梦, 刘占彪, 张毅, 朱思庆, 石晶晶, 宗星星, 陈学军, 李丽琴. 亚急性梭曼染毒豚鼠颈部脊髓差异表达蛋白分析[J]. 中国生物工程杂志, 2023, 43(2/3): 64-74.
[3] 王宇航, 陈学明, 刘俗生, 阮志军, 张敏, 宋春丽, 尹丰, 李子刚. 一种多肽固相合成方法与纯化策略研究[J]. 中国生物工程杂志, 2023, 43(1): 35-41.
[4] 刘平阳, 刘占芳, 周红, 朱军, 刘耀. 生物质谱分析法在脂质组学的应用[J]. 中国生物工程杂志, 2023, 43(1): 87-103.
[5] 张杰, 林炳锋, 许平翠, 王娜妮, 陈郁. 麦冬提取物治疗2型糖尿病小鼠的血清代谢组学研究*[J]. 中国生物工程杂志, 2022, 42(11): 99-108.
[6] 陈娟, 杨慧林, 黄运红, 龙中儿. 炭样小单孢菌中抗生素生物合成相关蛋白的筛选[J]. 中国生物工程杂志, 2016, 36(7): 55-63.
[7] 吕珊珊, 侯运华, 闫孟节, 钟耀华. 工业真菌高效产酶突变技术与高产机制[J]. 中国生物工程杂志, 2016, 36(3): 111-119.
[8] 梁丽珠, 孙佳楠, 李恺, 刘明伟, 丁琛, 秦钧. 蛋白质组分析油酸对HepG2细胞转录因子DNA结合活性的影响[J]. 中国生物工程杂志, 2015, 35(5): 22-31.
[9] 张砚君, 刘荣, 张梦楠, 苗庆芳, 甄永苏, 熊冬生, 张益芝. IL3融合蛋白稳定性分析、改造及活性研究[J]. 中国生物工程杂志, 2013, 33(3): 117-122.
[10] 贾伟, 陈熙, 周春喜, 宋兰坤. 单克隆抗体仿制药物的结构分析策略[J]. 中国生物工程杂志, 2012, 32(10): 93-98.
[11] 张媛媛, 胡启蒙, 王亮亮, 李新红. 哺乳动物精子磷酸化蛋白质组学研究进展[J]. 中国生物工程杂志, 2012, 32(04): 76-82.
[12] 闫慧, 黄文芳, 杨永长, 肖代雯, 姜伟, 罗春丽. 临床常见革兰氏阳性球菌蛋白指纹库的构建[J]. 中国生物工程杂志, 2011, 31(10): 95-99.
[13] 葛伟峰, 储消和, 王永红, 张嗣良. 应用于二维电泳细胞蛋白质样品提取的复合蛋白酶抑制剂的优化[J]. 中国生物工程杂志, 2010, 30(12): 66-71.
[14] 钟一维 李金耀 耿爽 王宾. 鉴定免疫细胞中DNA疫苗结合蛋白[J]. 中国生物工程杂志, 2010, 30(10): 0-0.
[15] 钟一维, 李金耀, 耿爽, 王宾. 鉴定免疫细胞中DNA疫苗结合蛋白[J]. 中国生物工程杂志, 2010, 30(10): 12-16.