Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (6): 125-132    DOI: 10.13523/j.cb.2211024
论坛     
人体免疫相关的合成生物学生物安全风险和应对策略研究*
付萌萌1,苏丹丹2,左锟澜3,吴宗震3,李思思4,徐雁龙5,刘欢3,6,**()
1 北京科普发展与研究中心 北京 100101
2 武汉大学 武汉 430072
3 中国科学技术大学 合肥 230026
4 中国疾病预防控制中心 北京 102206
5 中国科学院大学 北京 100049
6 中国科学院武汉病毒研究所 武汉 430071
Biosafety Risks of Synthetic Biology Related to Human Immunity and The Countermeaseures
FU Meng-meng1,SU Dan-dan2,ZUO Kun-lan3,WU Zong-zhen3,LI Si-si4,XU Yan-long5,LIU Huan3,6,**()
1 Beijing Science Communication Development and Research Center, Beijing 100101, China
2 Renmin Hospital of Wuhan University, Wuhan 430072, China
3 School of Humanities and Social Sciences, University of Science and Technology of China, Hefei 230026, China
4 Office of Laboratory Management, Chinese Center for Disease Control and Prevention, Beijing 102206, China
5 College of Humanities, University of Chinese Academy of Sciences, Beijing 100049, China
6 Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
 全文: PDF(514 KB)   HTML
摘要:

人体免疫相关的合成生物学一直是国际生物医学领域的前沿热点之一,它在重大疾病免疫疗法和预防医学等领域显示出了巨大的应用潜力。而人类免疫相关的合成生物学生物安全将越来越成为科技造福人类的重要健康研究主题,这一前沿研究领域也关系到总体国家安全和人类未来命运。在与人体免疫相关的合成生物学领域,重点分析潜在生物安全风险因子,从微生物对免疫功能影响、免疫抑制、免疫过激应答、自身免疫反应和人类基因组免疫5个方面进行研究,提出涉及合成生物学相关的生物安全问题并提出应对策略,为人类健康领域生物安全和合成生物技术科技创新发展保驾护航。

关键词: 人体免疫合成生物学生物安全    
Abstract:

Human immune-related synthetic biology has always been one of the hot spots in the international biomedical field, which has shown great application potential in such fields as immunotherapy for critical diseases and preventive medicine. Moreover, human immune-related synthetic biology and biological safety will increasingly become an important health research topic for science and technology to benefit human welfare. This cutting-edge research field will also affect the overall national security and the future fate of mankind. By focusing on the analysis of possible biosafety risk factors in the field of synthetic biology related to human immunity, the research was conducted from five aspects: the impact of microorganisms on immune function, immunosuppression, immune overreaction, autoimmune response and human genomic immunity, and the biosafety issues related to synthetic biology were proposed and the corresponding strategies were proposed as safeguard measures for the scientific and technological innovation and development of biosafety and synthetic biotechnology in the field of human health.

Key words: Human immunity    Synthetic biology    Biosafety
收稿日期: 2022-11-13 出版日期: 2023-07-04
ZTFLH:  Q819  
基金资助: * 国家重点研发计划(2018YFA0902402);中国科学院“高质量数据池和数据产品服务体系建设”(2019WQZX012);中国疾病预防控制中心“总体国家安全观下病原微生物实验室生物安全史研究”(BB2110240075)
通讯作者: **电子信箱:liuhuan520@ustc.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
付萌萌
苏丹丹
左锟澜
吴宗震
李思思
徐雁龙
刘欢

引用本文:

付萌萌, 苏丹丹, 左锟澜, 吴宗震, 李思思, 徐雁龙, 刘欢. 人体免疫相关的合成生物学生物安全风险和应对策略研究*[J]. 中国生物工程杂志, 2023, 43(6): 125-132.

FU Meng-meng, SU Dan-dan, ZUO Kun-lan, WU Zong-zhen, LI Si-si, XU Yan-long, LIU Huan. Biosafety Risks of Synthetic Biology Related to Human Immunity and The Countermeaseures. China Biotechnology, 2023, 43(6): 125-132.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2211024        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I6/125

生物安全风险 应对策略
人体微生物合成生物学影响免疫功能,如免疫排斥、过敏反应等
免疫应答抑制,如病毒载体携带部分致病基因或失活病毒在特定情况下被激活等
免疫过激应答,如免疫细胞过度释放炎性物质和治疗性微生物溶瘤病毒、噬菌体等具有免疫原性
自身免疫应答风险,如免疫细胞过度激活攻击自身组织、细胞凋亡造成的免疫原性片段释放及个体遗传因素等
干扰人类基因组免疫,如基因治疗药物具有脱靶效应、非特异性沉默免疫细胞等
① 建立回溯机制和微生物种群印迹
② 加强研究监管和安全立法
③ 关注新型合成抗原及其免疫应答
④ 应用宏基因组学和大数据系统
⑤ 密切关注基因编辑技术
表1  人体免疫相关的合成生物学生物安全风险和应对策略
[1] Inda M E, Lu T K. Microbes as biosensors. Annual Review of Microbiology, 2020, 74: 337-359.
doi: 10.1146/annurev-micro-022620-081059 pmid: 32660390
[2] Kang M, Choe D, Kim K, et al. Synthetic biology approaches in the development of engineered therapeutic microbes. International Journal of Molecular Sciences, 2020, 21(22): 8744.
doi: 10.3390/ijms21228744
[3] van Spronsen F J, Blau N, Harding C, et al. Phenylketonuria. Nature Reviews Disease Primers, 2021, 7(1): 1-19.
doi: 10.1038/s41572-020-00234-1
[4] Isabella V M, Ha B N, Castillo M J, et al. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nature Biotechnology, 2018, 36(9): 857-864.
doi: 10.1038/nbt.4222 pmid: 30102294
[5] Hamady Z Z R, Scott N, Farrar M D, et al. Xylan-regulated delivery of human keratinocyte growth factor-2 to the inflamed colon by the human anaerobic commensal bacterium Bacteroides ovatus. Gut, 2010, 59(4): 461-469.
doi: 10.1136/gut.2008.176131 pmid: 19736360
[6] Mimee M, Nadeau P, Hayward A, et al. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science, 2018, 360(6391): 915-918.
doi: 10.1126/science.aas9315 pmid: 29798884
[7] Zhang L, Morgan R A, Beane J D, et al. Tumor-infiltrating lymphocytes genetically engineered with an inducible gene encoding interleukin-12 for the immunotherapy of metastatic melanoma. Clin Cancer Res, 2015, 21(10): 2278-2288.
doi: 10.1158/1078-0432.CCR-14-2085 pmid: 25695689
[8] Yew C H T, Gurumoorthy N, Nordin F, et al. Integrase deficient lentiviral vector: prospects for safe clinical applications. PeerJ, 2022, 10: e13704.
doi: 10.7717/peerj.13704
[9] Rajendran L, Paolicelli R. Microglia-mediated synapse loss in alzheimer’s disease. The Journal of Neuroscience, 2018, 38: 2911-2919.
doi: 10.1523/JNEUROSCI.1136-17.2017
[10] Maes M E, Colombo G, Schulz R, et al. Targeting microglia with lentivirus and AAV: recent advances and remaining challenges. Neuroscience Letters, 2019, 707: 134310.
doi: 10.1016/j.neulet.2019.134310
[11] Guo Q, Zhang J, Zheng Z S, et al. Lentivirus-mediated microRNA-26a-modified neural stem cells improve brain injury in rats with cerebral palsy. Journal of Cellular Physiology, 2020, 235(2): 1274-1286.
doi: 10.1002/jcp.29043 pmid: 31264214
[12] Guo Z S, Lu B F, Guo Z B, et al. Vaccinia virus-mediated cancer immunotherapy: cancer vaccines and oncolytics. Journal for ImmunoTherapy of Cancer, 2019, 7(1): 6.
doi: 10.1186/s40425-018-0495-7 pmid: 30626434
[13] Shukarev G, Callendret B, Luhn K, et al. A two-dose heterologous prime-boost vaccine regimen eliciting sustained immune responses to Ebola Zaire could support a preventive strategy for future outbreaks. Human Vaccines & Immunotherapeutics, 2017, 13(2): 266-270.
[14] Iwakuma T, Cui Y, Chang L J. Self-inactivating lentiviral vectors with U3 and U5 modifications. Virology, 1999, 261(1): 120-132.
pmid: 10441560
[15] Guerin J L, Gelfi J, Boullier S, et al. Myxoma virus leukemia-associated protein is responsible for major histocompatibility complex class I and Fas-CD 95 down-regulation and defines scrapins, a new group of surface cellular receptor abductor proteins. Journal of Virology, 2002, 76(6): 2912-2923.
doi: 10.1128/JVI.76.6.2912-2923.2002
[16] Liszewski M K, Leung M K, Hauhart R, et al. Smallpox inhibitor of complement enzymes (SPICE): dissecting functional sites and abrogating activity. The Journal of Immunology, 2009, 183(5): 3150-3159.
doi: 10.4049/jimmunol.0901366
[17] Hong M H, Clubb J D, Chen Y Y. Engineering CAR-T cells for next-generation cancer therapy. Cancer Cell, 2020, 38(4): 473-488.
doi: 10.1016/j.ccell.2020.07.005 pmid: 32735779
[18] Pehlivan K C, Duncan B B, Lee D W. CAR-T cell therapy for acute lymphoblastic leukemia: transforming the treatment of relapsed and refractory disease. Current Hematologic Malignancy Reports, 2018, 13(5): 396-406.
doi: 10.1007/s11899-018-0470-x pmid: 30120708
[19] Jin Y J, Dong Y, Zhang J, et al. The toxicity of cell therapy: mechanism, manifestations, and challenges. Journal of Applied Toxicology, 2021, 41(5): 659-667.
doi: 10.1002/jat.4100 pmid: 33241595
[20] Ahmed S, Ahmed M Z, Rafique S, et al. Recent approaches for downplaying antibiotic resistance: molecular mechanisms. BioMed Research International, 2023, 2023: 1-27.
[21] Hoshiga F, Yoshizaki K, Takao N, et al. Modification of T2 phage infectivity toward Escherichia coli O157: H7 via using CRISPR/Cas9. FEMS Microbiology Letters, 2019, 366(4): fnz041.
[22] Federici S, Nobs S P, Elinav E. Phages and their potential to modulate the microbiome and immunity. Cellular & Molecular Immunology, 2021, 18(4): 889-904.
[23] Dabrowska K, Górski A, Abedon S T. Bacteriophage pharmacology and immunology. Bacteriophages. Cham: Springer, 2021: 295-339.
[24] Liang S, Latchman Y, Buhlmann J, et al. Regulation of PD-1, PD-L1, and PD-L 2 expression during normal and autoimmune responses. European Journal of Immunology, 2003, 33(10): 2706-2716.
doi: 10.1002/(ISSN)1521-4141
[25] Sharpe A H, Pauken K E. The diverse functions of the PD1 inhibitory pathway. Nature Reviews Immunology, 2018, 18(3): 153-167.
doi: 10.1038/nri.2017.108 pmid: 28990585
[26] 周静文, 何明基, 练辉, 等. 免疫检查点抑制剂PD-1免疫相关不良反应的临床分析. 介入放射学杂志, 2021, 30(1): 29-33.
Zhou J W, He M J, Lian H, et al. Clinical analysis of immune-related adverse events of PD-1 immune checkpoint inhibitors. Journal of Interventional Radiology, 2021, 30(1): 29-33.
[27] Sieiro Santos C, Álvarez Castro C, Moriano Morales C, et al. Anti-TNF-α-induced lupus syndrome. Zeitschrift Für Rheumatologie, 2021, 80(5): 481-486.
doi: 10.1007/s00393-021-00983-8
[28] ChavarríaMiranda A, Hernández Lain A, Toldos González O, et al. Immune-mediated necrotizing myopathy after treatment with adalimumab in a patient with HLA-B 27 ankylosing spondylitis. Neurologia (Barcelona, Spain), 2020, 36(8): 631-632.
[29] Carapetis J R, Beaton A, Cunningham M W, et al. Acute rheumatic fever and rheumatic heart disease. Nature Reviews Disease Primers, 2016, 2(1): 1-24.
[30] Ramos-Casals M, Brito-Zerón P, Soto M J, et al. Autoimmune diseases induced by TNF-targeted therapies. Best Practice & Research Clinical Rheumatology, 2008, 22(5): 847-861.
[31] Neradová A, Stam F, van den Berg J G, et al. Etanercept-associated SLE with lupus nephritis. Lupus, 2009, 18(7): 667-668.
doi: 10.1177/0961203308100560 pmid: 19433471
[32] Reyes L M, Estrada J L, Wang Z Y, et al. Creating class I MHC-null pigs using guide RNA and the Cas9 endonuclease. The Journal of Immunology, 2014, 193(11): 5751-5757.
doi: 10.4049/jimmunol.1402059
[33] 刘珊, 方姝煜. 基因编辑治疗原发性免疫缺陷病. 中国当代儿科杂志, 2021, 23(7): 743-748.
Liu S, Fang S Y. Gene editing for the treatment of primary immunodeficiency disease. Chinese Journal of Contemporary Pediatrics, 2021, 23(7): 743-748.
[34] Zhang J P, Yu X P, Guo P, et al. Satellite subgenomic particles are key regulators of adeno-associated virus life cycle. Viruses, 2021, 13(6): 1185.
doi: 10.3390/v13061185
[35] Adams D, Gonzalez-Duarte A, O’Riordan W D, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. New England Journal of Medicine, 2018, 379(1): 11-21.
doi: 10.1056/NEJMoa1716153
[36] Ratner M. Patients with porphyria bask in sunlight of FDA approval. Nature Biotechnology, 2019, 37(12): 1390-1391.
doi: 10.1038/s41587-019-0347-0 pmid: 31796929
[37] Scott L J, Keam S J. Lumasiran: first approval. Drugs, 2021, 81(2): 277-282.
doi: 10.1007/s40265-020-01463-0 pmid: 33405070
[38] 赵晴, 陈广洁. siRNA在自身免疫病治疗中的研究进展. 现代免疫学, 2012, 32(6):519-522.
Zhao Q, Chen G J. Research progress of siRNA in the treatment of autoimmune diseases. Current Immunology, 2012, 32(6):519-522.
[39] 曲泽鹏, 陈沫先, 曹朝辉, 等. 合成微生物群落研究进展. 合成生物学, 2020, 1(6): 621-634.
doi: 10.12211/2096-8280.2020-012
Qu Z P, Chen M X, Cao C H, et al. Research advances in synthetic microbial communities. Synthetic Biology Journal, 2020, 1(6): 621-634.
doi: 10.12211/2096-8280.2020-012
[40] 宁峻涛, 邹诗施, 左锟澜, 等. 合成生物活性物质的生物安全风险和应对策略研究. 中国生物工程杂志, 2023, 43(2-3): 180-189.
Ning J T, Zou S S, Zuo K L, et al. Biosafety risks and countermeasures of active substance in synthesis biology. China Biotechnology, 2023, 43(2-3): 180-189.
[41] 冀朋. 合成生物学的哲学基础问题研究. 武汉:华中科技大学, 2021.
Ji P. Research on philosophical foundation of synthetic biology. Wuhan:Huazhong University of Science and Technology, 2021.
[42] 潘婷婷, 张娟. 腺相关病毒载体工程研究. 生物化工, 2020, 6(4):156-159, 162
Pan T T, Zhang J. Recent advances in engineering adeno-associated virus. Shengwu Huagong, 2020, 6(4):156-159, 162
[43] 李洋, 申晓林, 孙新晓, 等. CRISPR基因编辑技术在微生物合成生物学领域的研究进展. 合成生物学, 2021, 2(1):106-120.
doi: 10.12211/2096-8280.2020-039
Li Y, Shen X L, Sun X X, et al. Advances of CRISPR gene editing in microbial synthetic biology. Synthetic Biology Journal, 2021, 2(1):106-120.
doi: 10.12211/2096-8280.2020-039
[1] 李雨桐, 崔天琦, 张海林, 于广乐, 栾霁, 王海龙. 肿瘤靶向细菌Escherichia coli Nissle 1917在癌症治疗中的研究进展*[J]. 中国生物工程杂志, 2023, 43(6): 54-68.
[2] 刘亭亭, 张平, 张悦. 光控表达系统在合成生物学中的调控作用*[J]. 中国生物工程杂志, 2023, 43(4): 92-100.
[3] 宁峻涛, 邹诗施, 左锟澜, 吴宗震, 李晶, 徐雁龙, 刘欢. 合成生物活性物质的生物安全风险和应对策略研究*[J]. 中国生物工程杂志, 2023, 43(2/3): 180-189.
[4] 杨洋, 姚明东, 王颖, 肖文海. 酵母合成2'-岩藻糖基乳糖的研究进展*[J]. 中国生物工程杂志, 2023, 43(1): 127-138.
[5] 郭彦彤,刘仲明,张海燕,张宝. 分子即时检测(POCT)技术及其在新发传染病中的应用*[J]. 中国生物工程杂志, 2022, 42(9): 50-57.
[6] 曾雪霞,但玉,毛绍名,孙佳慧,栾国栋,吕雪峰. 蓝藻光驱固碳合成糖类物质的技术研究进展*[J]. 中国生物工程杂志, 2022, 42(7): 90-100.
[7] 张大璐,葛奇,冯一博,陈为刚. DNA数据存储的科研概况国际对比与分析[J]. 中国生物工程杂志, 2022, 42(6): 116-129.
[8] 白松,侯正杰,高庚荣,乔斌,程景胜. 微生物合成奇数链脂肪酸研究进展*[J]. 中国生物工程杂志, 2022, 42(6): 76-85.
[9] 梁世玉,万里,郭潇佳,王雪颖,吕力婷,胡英菡,赵宗保. 构建可合成非天然辅酶的圆红冬孢酵母工程菌*[J]. 中国生物工程杂志, 2022, 42(5): 58-68.
[10] 赵赤鸿,苏丹丹,厉春,吴宗震,左锟澜,徐雁龙,刘欢. 总体国家安全观下合成生物学风险和应对策略研究*[J]. 中国生物工程杂志, 2022, 42(12): 120-128.
[11] 韩春丽,王汉杰. 工程生物活药在肿瘤免疫治疗中的应用[J]. 中国生物工程杂志, 2022, 42(10): 39-50.
[12] 李慧敏,贾斌,李霞,刘夺. 合成芳香族化合物的酵母底盘改造策略*[J]. 中国生物工程杂志, 2022, 42(10): 80-92.
[13] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[14] 黄焕邦,吴洋,杨友辉,王兆官,齐浩. 基于古菌酪氨酰tRNA合成酶非天然氨基酸插入的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 110-125.
[15] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.