Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (1): 87-103    DOI: 10.13523/j.cb.2207041
综述     
生物质谱分析法在脂质组学的应用
刘平阳1,刘占芳2,*(),周红2,朱军2,刘耀1,2,*
1 中国人民公安大学侦查学院 北京 100038
2 公安部物证鉴定中心 北京 100038
Application of Biological Mass Spectrometry in Lipidomics Analysis
LIU Ping-yang1,LIU Zhan-fang2,*(),ZHOU Hong2,ZHU Jun2,LIU Yao1,2,*
1 School of Investigation, People’s Public Security University of China, Beijing 100038, China
2 Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China
 全文: PDF(1559 KB)   HTML
摘要:

脂质与许多慢性病(如糖尿病、高血压)和精神系统疾病(如阿尔茨海默病)等有关。脂质组学是以现代生物技术为手段,对生物体中的全脂质进行定性和定量的一门新兴学科。目前,生物质谱分析法是对脂质谱进行分析和定量的最有效方法,国内对脂质组学的系统研究还比较匮乏。综述脂质组学的概念与分类,探究不同的生物样品前处理方法,系统介绍近几年国际上生物质谱分析法在脂质组学的应用,并对脂质组学的发展趋势进行展望。

关键词: 生物质谱分析法生物样品前处理方法脂质组学    
Abstract:

Lipids are associated with many chronic diseases (such as diabetes and hypertension) and mental system disorders (e.g.Alzheimer’s disease). Lipidomics uses modern biotechnology to analyze biological samples. It is a new field to analyze total lipids quantitatively and qualitatively. At present, biological mass spectrometry has become the most effective method in lipid analysis. However, systematic research on lipidomics is rare in the domestic literature. Based on the available literature, an overview is provided, including classification of lipidomics, pretreatment method of biological sample, and analytical methods. Moreover, different pretreatment methods of biological samples are compared and analyzed. Simultaneously, the use of biological mass spectrometry in lipidomics is systematically introduced in recent years. In addition, the future trend of lipidomics is also introduced and analyzed.

Key words: Biological mass spectrometry    Pretreatment method of biological sample    Lipidomics
收稿日期: 2022-07-20 出版日期: 2023-02-14
ZTFLH:  O657  
通讯作者: *刘占芳 电子信箱:liuzhanfang2001@163.com,刘耀   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘平阳
刘占芳
周红
朱军
刘耀

引用本文:

刘平阳, 刘占芳, 周红, 朱军, 刘耀. 生物质谱分析法在脂质组学的应用[J]. 中国生物工程杂志, 2023, 43(1): 87-103.

LIU Ping-yang, LIU Zhan-fang, ZHOU Hong, ZHU Jun, LIU Yao. Application of Biological Mass Spectrometry in Lipidomics Analysis. China Biotechnology, 2023, 43(1): 87-103.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2207041        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I1/87

类别 缩写 示例
脂肪酰类 FA
甘油脂类 GL
甘油磷脂类 GP
鞘脂类 SP
固醇脂类 ST
异戊烯醇脂类 PR
糖脂类 SL
聚酮化合物类 PK
表1  脂质的分类[56]
图1  生物样品的不同前处理方法[75]
图2  两批人血浆在不同LLE提取溶剂组合条件下的磷脂含量差异[95]
图3  酮康唑在不同pH和提取溶剂组合条件下的回收率[95]
类型 反相固相萃取 正相固相萃取 离子交换固相萃取
固定相官能团 烷基或芳基键合硅烷 Si-CN、Si-NH2、Si-二醇、纯硅胶等 季铵键合硅烷(强阴离子交换)、磺酸键合硅烷(强阳离子交换)、羧酸键合硅烷(弱阳离子交换)、中性胺键合硅烷(弱阴离子交换)
保留机制 非极性分子间相互作用、范德华力、分散力 极性分子间相互作用、氢键、偶极-偶极相互作用、偶极-诱导偶极相互作用 分析物和填料之间带有相反电荷的官能团的静电吸引
上样 样品加入水相缓冲液调节pH,确保分析物不被电离后再上样 样品加入非极性溶剂后再上样 样品加入水或者有机溶剂、低盐溶液,调节pH使分析物和固定相上官能团电荷相反
洗脱 极性有机溶剂 极性有机溶剂 利用pH、离子强度、溶剂改变来破坏相反电荷之间的作用或者用选择性更强的反离子竞争离子交换作用
应用 非极性至中等极性化合物 极性化合物 阳离子交换:碱性化合物,如伯、仲、叔胺和季铵盐等;阴离子交换:酸性化合物,如羧酸、磺酸等
表2  主要SPE类型、保留和洗脱机制及应用[75]
图4  生物质谱分析法工作流程
方法 脂质种类 优势 劣势
ESI-MS: 串联质谱鸟枪法脂质组学 植物脂质 灵敏度高,仪器设备成本低 脂肪酰基难以识别,脂质裂解数据分析需要专门知识储备,至少需要选择两种内标物质
ESI-MS: 高质量精度鸟枪法脂质组学 如果质谱仪有相应的软件包,则可涵盖所有脂质 高效、广泛和灵敏的脂质测定 对于非极性脂质的电离响应每次都需要校正,同位素碎片会对选定的质量范围有影响
ESI-MS: 多维质谱鸟枪法脂质组学 超过95%的细胞脂质组 样品用量少 不适用于低含量或电离难度大的脂质分析,对于同分异构体的碎裂模式相同时,无法进行区分
MALDI-MS 多种脂类,包括复杂的糖脂类 分析速度快,易于操作 基质化合物会被一起电离,使质谱分析变得复杂,导致定性和定量的灵敏度降低
IM-MS 脂质同分异构体(结构异构体、构象异构体和手性异构体)和同位素 样品前处理简单,常压下电离 只有少数特定的脂质可以进行分析
DESI-MS 磷脂、脂肪酸 样品前处理简单,常压下电离 只适用于可电离的脂质分子,如磷脂和脂肪酸
表3  生物质谱分析法在脂质组学分析方面的应用
[1] Zhang T, Saghatelian A. Emerging roles of lipids in BCL-2 family-regulated apoptosis. Biochimica et Biophysica Acta(BBA)-Molecular and Cell Biology of Lipids, 2013, 1831(10): 1542-1554.
[2] Kleuser B, Japtok L. Sphingolipids and inflammatory diseases of the skin. Handbook of Experimental Pharmacology, 2013(216): 355-372.
[3] di Paolo G, de Camilli P. Phosphoinositides in cell regulation and membrane dynamics. Nature, 2006, 443(7112): 651-657.
doi: 10.1038/nature05185
[4] Markgraf D F, Al-Hasani H, Lehr S. Lipidomics-reshaping the analysis and perception of type 2 diabetes. International Journal of Molecular Sciences, 2016, 17(11): 1841.
doi: 10.3390/ijms17111841
[5] Graessler J, Schwudke D, Schwarz P E H, et al. Top-down lipidomics reveals ether lipid deficiency in blood plasma of hypertensive patients. PLoS One, 2009, 4(7): e6261.
doi: 10.1371/journal.pone.0006261
[6] Chen L J, Dar N J, Na R, et al. Enhanced defense against ferroptosis ameliorates cognitive impairment and reduces neurodegeneration in 5xFAD mice. Free Radical Biology and Medicine, 2022, 180: 1-12.
doi: 10.1016/j.freeradbiomed.2022.01.002 pmid: 34998934
[7] Han X L, Gross R W. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. Journal of Lipid Research, 2003, 44(6): 1071-1079.
doi: 10.1194/jlr.R300004-JLR200 pmid: 12671038
[8] Lagarde M, Géloën A, Record M, et al. Lipidomics is emerging. Biochimica et Biophysica Acta, 2003, 1634(3): 61-69.
pmid: 14643793
[9] Fahy E, Subramaniam S, Brown H A, et al. A comprehensive classification system for lipids. Journal of Lipid Research, 2005, 46(5): 839-861.
doi: 10.1194/jlr.E400004-JLR200 pmid: 15722563
[10] Fahy E, Subramaniam S, Murphy R C, et al. Update of the LIPID MAPS comprehensive classification system for lipids. Journal of Lipid Research, 2009, 50: S9-S14.
doi: 10.1194/jlr.R800095-JLR200
[11] Ghosson H, Guitton Y, Ben Jrad A, et al. Electrospray ionization and heterogeneous matrix effects in liquid chromatography/mass spectrometry based meta-metabolomics: a biomarker or a suppressed ion? Rapid Communications in Mass Spectrometry, 2021, 35(2): e8977.
doi: 10.1002/rcm.8977 pmid: 33053239
[12] Tisler S, Pattison D I, Christensen J H. Correction of matrix effects for reliable non-target screening LC-ESI-MS analysis of wastewater. Analytical Chemistry, 2021, 93(24): 8432-8441.
doi: 10.1021/acs.analchem.1c00357 pmid: 34096716
[13] Taylor A J, Dexter A, Bunch J. Exploring ion suppression in mass spectrometry imaging of a heterogeneous tissue. Analytical Chemistry, 2018, 90(9): 5637-5645.
doi: 10.1021/acs.analchem.7b05005 pmid: 29461803
[14] Nickerson J L, Doucette A A. Rapid and quantitative protein precipitation for proteome analysis by mass spectrometry. Journal of Proteome Research, 2020, 19(5): 2035-2042.
doi: 10.1021/acs.jproteome.9b00867 pmid: 32195589
[15] Dai M J, Huang G M. Protein precipitation coupled to paper spray with a tube for one-step analysis of blood. Rapid Communications in Mass Spectrometry, 2020, 34(10): e8759.
[16] Park S K, Noh G Y, Yu H W, et al. Lessons learned in protein precipitation using a membrane emulsification technique to produce reversible and uniform microbeads. Pharmaceutics, 2021, 13(10): 1738.
doi: 10.3390/pharmaceutics13101738
[17] Leppä M M, Laitila J E, Salminen J P. Distribution of protein precipitation capacity within variable proanthocyanidin fingerprints. Molecules (Basel, Switzerland), 2020, 25(21): 5002.
doi: 10.3390/molecules25215002
[18] Benabdelkamel H, Masood A, Alanazi I O, et al. Comparison of protein precipitation methods from adipose tissue using difference gel electrophoresis. Electrophoresis, 2018, 39(14): 1745-1753.
doi: 10.1002/elps.201800124
[19] Nickerson J L, Baghalabadi V, Dang Z, et al. Organic solvent-based protein precipitation for robust proteome purification ahead of mass spectrometry. Journal of Visualized Experiments, 2022(180): e63503.
[20] Špadina M, Dufrêche J F, Pellet-Rostaing S, et al. Molecular forces in liquid-liquid extraction. Langmuir: the ACS Journal of Surfaces and Colloids, 2021, 37(36): 10637-10656.
doi: 10.1021/acs.langmuir.1c00673
[21] Maddi B. Extraction methods used to separate lipids from microbes. Methods in Molecular Biology, 2019, 1995: 151-159.
doi: 10.1007/978-1-4939-9484-7_9 pmid: 31148127
[22] Tehranirokh M, van den Bronk M, Smith P, et al. Automated liquid-liquid extraction of organic compounds from aqueous samples using a multifunction autosampler syringe. Journal of Chromatography A, 2021, 1642: 462032.
doi: 10.1016/j.chroma.2021.462032
[23] Jajuli M N, Hussin M H, Saad B, et al. Electrochemically modulated liquid-liquid extraction for sample enrichment. Analytical Chemistry, 2019, 91(11): 7466-7473.
doi: 10.1021/acs.analchem.9b01674 pmid: 31050400
[24] Reichl B, Eichelberg N, Freytag M, et al. Evaluation and optimization of common lipid extraction methods in cerebrospinal fluid samples. Journal of Chromatography B, 2020, 1153: 122271.
doi: 10.1016/j.jchromb.2020.122271
[25] Markina N E, Markin A V, Weber K, et al. Liquid-liquid extraction-assisted SERS-based determination of sulfamethoxazole in spiked human urine. Analytica Chimica Acta, 2020, 1109: 61-68.
doi: S0003-2670(20)30307-X pmid: 32252906
[26] Wang J L, Feng J, Xu L, et al. Ionic liquid-based salt-induced liquid-liquid extraction of polyphenols and anthraquinones in Polygonum cuspidatum. Journal of Pharmaceutical and Biomedical Analysis, 2019, 163: 95-104.
doi: 10.1016/j.jpba.2018.09.050
[27] Yu T H, Olsson E, Lian G P, et al. Prediction of the liquid-liquid extraction properties of imidazolium-based ionic liquids for the extraction of aromatics from aliphatics. Journal of Chemical Information and Modeling, 2021, 61(7): 3376-3385.
doi: 10.1021/acs.jcim.1c00212 pmid: 34161083
[28] Kuznetsov A, Sahinidis N V. ExtractionScore: a quantitative framework for evaluating synthetic routes on predicted liquid-liquid extraction performance. Journal of Chemical Information and Modeling, 2021, 61(5): 2274-2282.
doi: 10.1021/acs.jcim.0c01426 pmid: 33881866
[29] Ney L J, Felmingham K L, Bruno R, et al. Chloroform-based liquid-liquid extraction and LC-MS/MS quantification of endocannabinoids, cortisol and progesterone in human hair. Journal of Pharmaceutical and Biomedical Analysis, 2021, 201: 114103.
doi: 10.1016/j.jpba.2021.114103
[30] Ma S P, Li F F, Tan Z J. Enantioselective liquid-liquid extraction of tryptophan enantiomers by a recyclable aqueous biphasic system based on stimuli-responsive polymers. Journal of Chromatography A, 2021, 1656: 462532.
doi: 10.1016/j.chroma.2021.462532
[31] Furse S, Watkins A J, Koulman A. Extraction of lipids from liquid biological samples for high-throughput lipidomics. Molecules (Basel, Switzerland), 2020, 25(14): 3192.
doi: 10.3390/molecules25143192
[32] Züllig T, Trötzmüller M, Köfeler H C. Lipidomics from sample preparation to data analysis: a primer. Analytical and Bioanalytical Chemistry, 2020, 412(10): 2191-2209.
doi: 10.1007/s00216-019-02241-y pmid: 31820027
[33] Liu D Y, Yang J N, Jin W B, et al. A high coverage pseudotargeted lipidomics method based on three-phase liquid extraction and segment data-dependent acquisition using UHPLC-MS/MS with application to a study of depression rats. Analytical and Bioanalytical Chemistry, 2021, 413(15): 3975-3986.
doi: 10.1007/s00216-021-03349-w pmid: 33934189
[34] Li P P, Li M H, Yue D M, et al. Solid-phase extraction methods for nucleic acid separation, a review. Journal of Separation Science, 2022, 45(1): 172-184.
doi: 10.1002/jssc.202100295
[35] 林舒婷, 丁青青, 张文敏, 等. 固相萃取吸附材料在植物激素样品前处理中的应用新进展. 色谱, 2021, 39(12): 1281-1290.
doi: 10.3724/SP.J.1123.2021.03045
Lin S T, Ding Q Q, Zhang W M, et al. Novel adsorption material for solid phase extraction in sample pretreatment of plant hormones. Chinese Journal of Chromatography, 2021, 39(12): 1281-1290.
doi: 10.3724/SP.J.1123.2021.03045
[36] Wang D, Chen X G, Feng J J, et al. Recent advances of ordered mesoporous silica materials for solid-phase extraction. Journal of Chromatography A, 2022, 1675: 463157.
doi: 10.1016/j.chroma.2022.463157
[37] Chen G Y, Zhang Q B. Quantification of plasma oxylipins using solid-phase extraction and reversed-phase liquid chromatography-triple quadrupole mass spectrometry. Methods in Molecular Biology, 2021, 2306: 171-186.
[38] Martínez Pérez-Cejuela H, Ten-Doménech I, El Haskouri J, et al. Solid-phase extraction of phospholipids using mesoporous silica nanoparticles: application to human milk samples. Analytical and Bioanalytical Chemistry, 2018, 410(20): 4847-4854.
doi: 10.1007/s00216-018-1121-8 pmid: 29748757
[39] Song G S, Zhu Q C, Li L Q, et al. Lipidomics phenotyping of clam (Corbicula fluminea) through graphene/fibrous silica nanohybrids based solid-phase extraction and HILIC-MS analysis. Food Chemistry, 2021, 354: 129565.
doi: 10.1016/j.foodchem.2021.129565
[40] Meloche M, Jutras M, St-Jean I, et al. Isocyanate derivatization coupled with phospholipid removal microelution-solid phase extraction for the simultaneous quantification of (S)-metoprolol and (S)-α-hydroxymetoprolol in human plasma with LC-MS/MS. Journal of Pharmaceutical and Biomedical Analysis, 2021, 204: 114263.
doi: 10.1016/j.jpba.2021.114263
[41] He X Y, Cao H, Li X, et al. MG@PD@TiO2 nanocomposite based magnetic solid phase extraction coupled with LC-MS/MS for determination of lysophosphatidylcholines biomarkers of plasma in psoriasis patients. Journal of Pharmaceutical and Biomedical Analysis, 2021, 201: 114101.
doi: 10.1016/j.jpba.2021.114101
[42] Dai Y L, Row K H. Imidazole-modified C6-chitosan derivatives used to extract β-sitosterol from edible oil samples with a microwave-assisted solid phase extraction method. Journal of Separation Science, 2021, 44(21): 3924-3932.
doi: 10.1002/jssc.202100503
[43] Antonelli M, Benedetti B, Cavaliere C, et al. Phospholipidome of extra virgin olive oil: development of a solid phase extraction protocol followed by liquid chromatography-high resolution mass spectrometry for its software-assisted identification. Food Chemistry, 2020, 310: 125860.
doi: 10.1016/j.foodchem.2019.125860
[44] Looby N, Roszkowska A, Reyes-Garcés N, et al. Serum metabolic fingerprinting of psoriasis and psoriatic arthritis patients using solid-phase microextraction-liquid chromatography-high-resolution mass spectrometry. Metabolomics: Official Journal of the Metabolomic Society, 2021, 17(7): 59.
[45] Apffel A, Zhao L M, Sartain M J. A novel solid phase extraction sample preparation method for lipidomic analysis of human plasma using liquid chromatography/mass spectrometry. Metabolites, 2021, 11(5): 294.
doi: 10.3390/metabo11050294
[46] Chen C Y, Lin P P, Tsai M H, et al. Targeted lipidomics profiling of acute arsenic exposure in mice serum by on-line solid-phase extraction stable-isotope dilution liquid chromatography-tandem mass spectrometry. Archives of Toxicology, 2017, 91(9): 3079-3091.
doi: 10.1007/s00204-017-1937-6
[47] Ambaw Y A, Dahl S R, Chen Y, et al. Tailored polymer-based selective extraction of lipid mediators from biological samples. Metabolites, 2021, 11(8): 539.
doi: 10.3390/metabo11080539
[48] Kanu A B. Recent developments in sample preparation techniques combined with high-performance liquid chromatography: a critical review. Journal of Chromatography A, 2021, 1654: 462444.
doi: 10.1016/j.chroma.2021.462444
[49] Hořejší K, Jirásko R, Chocholoušková M, et al. Comprehensive identification of glycosphingolipids in human plasma using hydrophilic interaction liquid chromatography-electrospray ionization mass spectrometry. Metabolites, 2021, 11(3): 140.
doi: 10.3390/metabo11030140
[50] Liakh I, Sledzinski T, Kaska L, et al. Sample preparation methods for lipidomics approaches used in studies of obesity. Molecules (Basel, Switzerland), 2020, 25(22): 5307.
doi: 10.3390/molecules25225307
[51] Hu T, Zhang J L. Mass-spectrometry-based lipidomics. Journal of Separation Science, 2018, 41(1): 351-372.
doi: 10.1002/jssc.201700709 pmid: 28859259
[52] 宋诗瑶, 白玉, 刘虎威. 脂质组学分析中样品前处理技术的研究进展. 色谱, 2020, 38(1): 66-73.
doi: 10.3724/SP.J.1123.2019.07011
Song S Y, Bai Y, Liu H W. Advances in the development of the sample preparation techniques in lipidomics. Chinese Journal of Chromatography, 2020, 38(1): 66-73.
doi: 10.3724/SP.J.1123.2019.07011
[53] Rupasinghe T W T, Roessner U. Extraction of plant lipids for LC-MS-based untargeted plant lipidomics. Methods in Molecular Biology, 2018, 1778: 125-135.
doi: 10.1007/978-1-4939-7819-9_9 pmid: 29761435
[54] Wong M W K, Braidy N, Pickford R, et al. Comparison of single phase and biphasic extraction protocols for lipidomic studies using human plasma. Frontiers in Neurology, 2019, 10: 879.
doi: 10.3389/fneur.2019.00879 pmid: 31496985
[55] Ashri N Y, Abdel-Rehim M. Sample treatment based on extraction techniques in biological matrices. Bioanalysis, 2011, 3(17): 2003-2018.
doi: 10.4155/bio.11.201 pmid: 21899508
[56] Agatonovic-Kustrin S, Morton D W, Smirnov V, et al. Analytical strategies in lipidomics for discovery of functional biomarkers from human saliva. Disease Markers, 2019, 2019: 6741518.
[57] Delaunay-Bertoncini N, Hennion M C. Immunoaffinity solid-phase extraction for pharmaceutical and biomedical trace-analysis-coupling with HPLC and CE-perspectives. Journal of Pharmaceutical and Biomedical Analysis, 2004, 34(4): 717-736.
pmid: 15019051
[58] Pero-Gascon R, Pont L, Sanz-Nebot V, et al. On-line immunoaffinity solid-phase extraction capillary electrophoresis-mass spectrometry for the analysis of serum transthyretin. Methods in Molecular Biology, 2019, 1972: 57-76.
doi: 10.1007/978-1-4939-9213-3_5 pmid: 30847784
[59] Pont L, Benavente F, Barbosa J, et al. On-line immunoaffinity solid-phase extraction capillary electrophoresis mass spectrometry using Fab'antibody fragments for the analysis of serum transthyretin. Talanta, 2017, 170: 224-232.
doi: 10.1016/j.talanta.2017.03.104
[60] Hu T L, Chen R, Wang Q, et al. Recent advances and applications of molecularly imprinted polymers in solid-phase extraction for real sample analysis. Journal of Separation Science, 2021, 44(1): 274-309.
doi: 10.1002/jssc.202000832 pmid: 33236831
[61] Martins R O, Gomes I C, Mendonça Telles A D, et al. Molecularly imprinted polymer as solid phase extraction phase for condensed tannin determination from Brazilian natural sources. Journal of Chromatography A, 2020, 1620: 460977.
doi: 10.1016/j.chroma.2020.460977
[62] Basan H S. Molecularly imprinted solid-phase extraction sorbents for the selective extraction of drugs from human urine. Methods in Molecular Biology, 2021, 2359: 123-130.
doi: 10.1007/978-1-0716-1629-1_10 pmid: 34410664
[63] Silva M S, Tavares A P M, de Faria H D, et al. Molecularly imprinted solid phase extraction aiding the analysis of disease biomarkers. Critical Reviews in Analytical Chemistry, 2022, 52(5): 933-948.
doi: 10.1080/10408347.2020.1843131
[64] Cai T P, Zhou Y Q, Liu H C, et al. Preparation of monodisperse, restricted-access, media-molecularly imprinted polymers using bi-functional monomers for solid-phase extraction of sarafloxacin from complex samples. Journal of Chromatography A, 2021, 1642: 462009.
doi: 10.1016/j.chroma.2021.462009
[65] Zhao S W, Wei C L, Sun Z A, et al. Preparation of restricted access media-molecularly imprinted polymers for the detection of chloramphenicol in bovine serum. Journal of Analytical Methods in Chemistry, 2019, 2019: 7930102.
[66] Marasco C A Jr, Sartore D M, Lamarca R S, et al. On-line solid-phase extraction of pharmaceutical compounds from wastewater treatment plant samples using restricted access media in column-switching liquid chromatography-tandem mass spectrometry. Journal of Chromatography B, 2021, 1180: 122896.
doi: 10.1016/j.jchromb.2021.122896
[67] Raabová H, Havlíková L C, Erben J, et al. Polycaprolactone composite micro/nanofibrous material as an alternative to restricted access media for direct extraction and separation of non-steroidal anti-inflammatory drugs from human serum using column-switching chromatography. Nanomaterials (Basel, Switzerland), 2021, 11(10): 2669.
[68] Raabová H, Háková M, Havlíková L C, et al. Poly-ε-caprolactone nanofibrous polymers: a simple alternative to restricted access media for extraction of small molecules from biological matrixes. Analytical Chemistry, 2020, 92(10): 6801-6805.
doi: 10.1021/acs.analchem.0c00544 pmid: 32314573
[69] Wang X X, Liu H C, Sun Z A, et al. Monodisperse restricted access material with molecularly imprinted surface for selective solid-phase extraction of 17β-estradiol from milk. Journal of Separation Science, 2020, 43(17): 3520-3533.
doi: 10.1002/jssc.202000449
[70] Wang Z Y, Bian L Q, Mo C L, et al. Targeted quantification of lipid mediators in skeletal muscles using restricted access media-based trap-and-elute liquid chromatography-mass spectrometry. Analytica Chimica Acta, 2017, 984: 151-161.
doi: S0003-2670(17)30828-0 pmid: 28843558
[71] Arfvidsson C, Wilson A, Heijer M, et al. Incurred sample reanalysis in AstraZeneca small molecule portfolio - what have we learned and where do we go next. Bioanalysis, 2018, 10(21): 1733-1745.
doi: 10.4155/bio-2018-0162 pmid: 30325197
[72] Lee L B, Wickremsinhe E R. A decade of incurred sample reanalysis: failures, investigations and impact. Bioanalysis, 2018, 10(21): 1767-1772.
doi: 10.4155/bio-2018-0214 pmid: 30301360
[73] Nguyen J M, Gilar M, Koshel B, et al. Assessing the impact of nonspecific binding on oligonucleotide bioanalysis. Bioanalysis, 2021, 13(16): 1232-1244.
[74] Houen G. Nonspecific binding in immunoassays for autoantibodies. Methods in Molecular Biology, 2019, 1901: 13-17.
doi: 10.1007/978-1-4939-8949-2_2 pmid: 30539565
[75] 李文魁, 张杰, 谢励诚. 液相色谱-质谱(LC-MS)生物分析手册:最佳实践、 实验方案及相关法规. 北京: 科学出版社, 2017: 190-205.
Li W K, Zhang J, Xie L C. Handbook of LC-MS bioanalysis:best practices, experimental protocols, and regulations. Beijing: Science Press, 2017: 190-205.
[76] Bevins N J, Hubbard J A, Fitzgerald R L, et al. A dilution method to mitigate biotin interference in cardiac troponin T testing. The Journal of Applied Laboratory Medicine, 2019, 4(3): 415-421.
doi: 10.1373/jalm.2018.028589 pmid: 31659079
[77] Strashnov I, Karunarathna N B, Fernando B R, et al. An isotope dilution liquid chromatography-mass spectrometry method for detection of melamine in milk powder. Food Additives & Contaminants: Part A, 2021, 38(11): 1805-1816.
[78] Ulaszewska M M, Mancini A, Garcia-Aloy M, et al. Isotopic dilution method for bile acid profiling reveals new sulfate glycine-conjugated dihydroxy bile acids and glucuronide bile acids in serum. Journal of Pharmaceutical and Biomedical Analysis, 2019, 173: 1-17.
doi: S0731-7085(19)30222-5 pmid: 31100508
[79] Regl C, Wohlschlager T, Esser-Skala W, et al. Dilute-and-shoot analysis of therapeutic monoclonal antibody variants in fermentation broth: a method capability study. mAbs, 2019, 11(3): 569-582.
doi: 10.1080/19420862.2018.1563034 pmid: 30668249
[80] Dahlin J L, Palte M J, LaMacchia J, et al. A rapid dilute-and-shoot UPLC-MS/MS assay to simultaneously measure 37 drugs and related metabolites in human urine for use in clinical pain management. The Journal of Applied Laboratory Medicine, 2019, 3(6): 974-992.
doi: 10.1373/jalm.2018.027342 pmid: 31639689
[81] Polson C, Sarkar P, Incledon B, et al. Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography-tandem mass spectrometry. Journal of Chromatography B, 2003, 785(2): 263-275.
doi: 10.1016/S1570-0232(02)00914-5
[82] Dams R, Huestis M A, Lambert W E, et al. Matrix effect in bio-analysis of illicit drugs with LC-MS/MS: influence of ionization type, sample preparation, and biofluid. Journal of the American Society for Mass Spectrometry, 2003, 14(11): 1290-1294.
pmid: 14597119
[83] Flaherty J M, Connolly P D, Decker E R, et al. Quantitative determination of perfluorooctanoic acid in serum and plasma by liquid chromatography tandem mass spectrometry. Journal of Chromatography B, 2005, 819(2): 329-338.
doi: 10.1016/j.jchromb.2005.03.002
[84] Xue Y J, Liu J, Pursley J, et al. A 96-well single-pot protein precipitation, liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for the determination of muraglitazar, a novel diabetes drug, in human plasma. Journal of Chromatography B, 2006, 831(1-2): 213-222.
doi: 10.1016/j.jchromb.2005.12.023
[85] Ma J, Shi J X, Le H, et al. A fully automated plasma protein precipitation sample preparation method for LC-MS/MS bioanalysis. Journal of Chromatography B, 2008, 862(1-2): 219-226.
doi: 10.1016/j.jchromb.2007.12.012
[86] Chen L G, Wang H, Zeng Q L, et al. On-line coupling of solid-phase extraction to liquid chromatography-a review. Journal of Chromatographic Science, 2009, 47(8): 614-623.
doi: 10.1093/chromsci/47.8.614
[87] Fu Q, Murray C I, Karpov O A, et al. Automated proteomic sample preparation: the key component for high throughput and quantitative mass spectrometry analysis. Mass Spectrometry Reviews, 2021: e21750.
[88] Wilson I D. High-performance liquid chromatography-mass spectrometry (HPLC-MS)-based drug metabolite profiling. Methods in Molecular Biology, 2011, 708: 173-190.
doi: 10.1007/978-1-61737-985-7_10 pmid: 21207290
[89] Xia L, Li Y X, Liu Y L, et al. Recent advances in sample preparation techniques in China. Journal of Separation Science, 2020, 43(1): 189-201.
doi: 10.1002/jssc.201900768 pmid: 31587455
[90] Aly A A, Górecki T. Green approaches to sample preparation based on extraction techniques. Molecules (Basel, Switzerland), 2020, 25(7): 1719.
doi: 10.3390/molecules25071719
[91] Saar E, Gerostamoulos D, Drummer O H, et al. Identification and quantification of 30 antipsychotics in blood using LC-MS/MS. Journal of Mass Spectrometry, 2010, 45(8): 915-925.
doi: 10.1002/jms.1783 pmid: 20648676
[92] Cai X H, Zhong B, Su B, et al. Development and validation of a rapid LC-MS/MS method for the determination of JCC76, a novel antitumor agent for breast cancer, in rat plasma and its application to a pharmacokinetics study. Biomedical Chromatography, 2012, 26(9): 1118-1124.
doi: 10.1002/bmc.1757 pmid: 22213194
[93] Kosovec J E, Egorin M J, Gjurich S, et al. Quantitation of 5-fluorouracil (5-FU) in human plasma by liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2008, 22(2): 224-230.
pmid: 18085512
[94] Perez de Souza L, Alseekh S, Naake T, et al. Mass spectrometry-based untargeted plant metabolomics. Current Protocols in Plant Biology, 2019, 4(4): e20100.
[95] Liu G W, Snapp H M, Ji Q C, et al. Strategy of accelerated method development for high-throughput bioanalytical assays using ultra high-performance liquid chromatography coupled with mass spectrometry. Analytical Chemistry, 2009, 81(22): 9225-9232.
doi: 10.1021/ac901316w pmid: 19856950
[96] Wu H Q, Zhang J, Norem K, et al. Simultaneous determination of a hydrophobic drug candidate and its metabolite in human plasma with salting-out assisted liquid/liquid extraction using a mass spectrometry friendly salt. Journal of Pharmaceutical and Biomedical Analysis, 2008, 48(4): 1243-1248.
doi: 10.1016/j.jpba.2008.09.002 pmid: 18926659
[97] Yoshida M, Akane A, Nishikawa M, et al. Extraction of thiamylal in serum using hydrophilic acetonitrile with subzero-temperature and salting-out methods. Analytical Chemistry, 2004, 76(16): 4672-4675.
pmid: 15307775
[98] Rustum A M. Determination of cadralazine in human whole blood using reversed-phase high-performance liquid chromatography: utilizing a salting-out extraction procedure. Journal of Chromatography B: Biomedical Sciences and Applications, 1989, 489(2): 345-352.
doi: 10.1016/S0378-4347(00)82912-6
[99] Zhang J, Wu H Q, Kim E, et al. Salting-out assisted liquid/liquid extraction with acetonitrile: a new high throughput sample preparation technique for good laboratory practice bioanalysis using liquid chromatography-mass spectrometry. Biomedical Chromatography: BMC, 2009, 23(4): 419-425.
doi: 10.1002/bmc.1135
[100] Jiang H L, Randlett C, Junga H, et al. Using supported liquid extraction together with cellobiohydrolase chiral stationary phases-based liquid chromatography with tandem mass spectrometry for enantioselective determination of acebutolol and its active metabolite diacetolol in spiked human plasma. Journal of Chromatography B, 2009, 877(3): 173-180.
doi: 10.1016/j.jchromb.2008.12.006
[101] Jiang H, Zeng J N, Zheng N Y, et al. A convenient strategy for quantitative determination of drug concentrations in tissue homogenates using a liquid chromatography/tandem mass spectrometry assay for plasma samples. Analytical Chemistry, 2011, 83(16): 6237-6244.
doi: 10.1021/ac200820q pmid: 21692511
[102] Pero-Gascon R, Benavente F, Minic Z, et al. On-line aptamer affinity solid-phase extraction capillary electrophoresis-mass spectrometry for the analysis of blood α-synuclein. Analytical Chemistry, 2020, 92(1): 1525-1533.
doi: 10.1021/acs.analchem.9b04802 pmid: 31825201
[103] Rosa M A, de Faria H D, Carvalho D T, et al. Biological sample preparation by using restricted-access nanoparticles prepared from bovine serum albumin: application to liquid chromatographic determination of β-blockers. Mikrochimica Acta, 2019, 186(9): 647.
doi: 10.1007/s00604-019-3774-1 pmid: 31456048
[104] Zhang Y Y, Lin S, Jiang P, et al. Determination of melamine and cyromazine in milk by high performance liquid chromatography coupled with online solid-phase extraction using a novel cation-exchange restricted access material synthesized by surface initiated atom transfer radical polymerization. Journal of Chromatography A, 2014, 1337: 17-21.
doi: 10.1016/j.chroma.2014.02.038 pmid: 24630066
[105] Amini N, Crescenzi C. Feasibility of an on-line restricted access material/liquid chromatography/tandem mass spectrometry method in the rapid and sensitive determination of organophosphorus triesters in human blood plasma. Journal of Chromatography B, 2003, 795(2): 245-256.
doi: 10.1016/S1570-0232(03)00568-3
[106] Peró-Gascón R, Pont L, Benavente F, et al. Analysis of serum transthyretin by on-line immunoaffinity solid-phase extraction capillary electrophoresis mass spectrometry using magnetic beads. Electrophoresis, 2016, 37(9): 1220-1231.
doi: 10.1002/elps.201500495 pmid: 26842820
[107] Luo Z M, Chen G N, Li X, et al. Molecularly imprinted polymer solid-phase microextraction coupled with ultra high performance liquid chromatography and tandem mass spectrometry for rapid analysis of pyrrolizidine alkaloids in herbal medicine. Journal of Separation Science, 2019, 42(21): 3352-3362.
doi: 10.1002/jssc.201900665 pmid: 31453662
[108] Wu C J, He J, Chen N N, et al. Synthesis of cobalt-based magnetic nanoporous carbon core-shell molecularly imprinted polymers for the solid-phase extraction of phthalate plasticizers in edible oil. Analytical and Bioanalytical Chemistry, 2018, 410(26): 6943-6954.
doi: 10.1007/s00216-018-1299-9 pmid: 30128807
[109] Zhao S W, Sun Z A, Liu H C, et al. Molecularly imprinted polymer coating on metal-organic frameworks for solid-phase extraction of fluoroquinolones from water. Journal of Separation Science, 2019, 42(21): 3302-3310.
doi: 10.1002/jssc.201900570 pmid: 31452342
[110] 韩贤林. 脂质组学:脂质的综合质谱分析. 北京: 中国轻工业出版社, 2019: 38-54.
Han X L. Lipidomics:comprehensive mass spectrometry analysis of lipids. Beijing: China Light Industry Press, 2019: 38-54.
[111] Lim H S, Kim J Y H, Kwak H S, et al. Integrated microfluidic platform for multiple processes from microalgal culture to lipid extraction. Analytical Chemistry, 2014, 86(17): 8585-8592.
doi: 10.1021/ac502324c pmid: 25090444
[112] Wang J N, Wang C Y, Han X L. Mass spectrometry-based shotgun lipidomics for cancer research. Advances Experimental Medicine and Biology, 2021, 1280: 39-55.
[113] Wang M, Wang C Y, Han R H, et al. Novel advances in shotgun lipidomics for biology and medicine. Progress in Lipid Research, 2016, 61: 83-108.
doi: 10.1016/j.plipres.2015.12.002 pmid: 26703190
[114] Zhang K, Hsu F F. Shotgun lipidomic analysis of Leishmania cells. Methods in Molecular Biology, 2021, 2306: 215-225.
doi: 10.1007/978-1-0716-1410-5_14 pmid: 33954949
[115] Boenzi S, Catesini G, Sacchetti E, et al. Comprehensive-targeted lipidomic analysis in Niemann-Pick C disease. Molecular Genetics and Metabolism, 2021, 134(4): 337-343.
doi: 10.1016/j.ymgme.2021.11.005 pmid: 34810067
[116] Chen J Z, Nichols K K, Wilson L, et al. Untargeted lipidomic analysis of human tears: a new approach for quantification of O-acyl-omega hydroxy fatty acids. The Ocular Surface, 2019, 17(2): 347-355.
doi: 10.1016/j.jtos.2019.02.004
[117] Wang T, Nie S, Ma G X, et al. Quantitative lipidomic analysis of Ascaris suum. PLoS Neglected Tropical Diseases, 2020, 14(12): e0008848.
doi: 10.1371/journal.pntd.0008848
[118] Ferreira H B, Neves B, Guerra I M, et al. An overview of lipidomic analysis in different human matrices of multiple sclerosis. Multiple Sclerosis and Related Disorders, 2020, 44: 102189.
doi: 10.1016/j.msard.2020.102189
[119] Su B L, Bettcher L F, Hsieh W Y, et al. A DMS shotgun lipidomics workflow application to facilitate high-throughput, comprehensive lipidomics. Journal of the American Society for Mass Spectrometry, 2021, 32(11): 2655-2663.
doi: 10.1021/jasms.1c00203 pmid: 34637296
[120] Hu C F, Wang M, Han X L. Shotgun lipidomics in substantiating lipid peroxidation in redox biology: methods and applications. Redox Biology, 2017, 12: 946-955.
doi: S2213-2317(17)30222-7 pmid: 28494428
[121] Kehelpannala C, Rupasinghe T, Hennessy T, et al. The state of the art in plant lipidomics. Molecular Omics, 2021, 17(6): 894-910.
doi: 10.1039/d1mo00196e pmid: 34699583
[122] Fenn J B, Mann M, Meng C K, et al. Electrospray ionization for mass spectrometry of large biomolecules. Science, 1989, 246(4926): 64-71.
doi: 10.1126/science.2675315 pmid: 2675315
[123] Brügger B, Erben G, Sandhoff R, et al. Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(6): 2339-2344.
[124] Welti R, Wang X M. Lipid species profiling: a high-throughput approach to identify lipid compositional changes and determine the function of genes involved in lipid metabolism and signaling. Current Opinion in Plant Biology, 2004, 7(3): 337-344.
pmid: 15134756
[125] Welti R, Li W Q, Li M Y, et al. Profiling membrane lipids in plant stress responses: role of phospholipase D alpha in freezing-induced lipid changes in Arabidopsis. Journal of Biological Chemistry, 2002, 277(35): 31994-32002.
doi: 10.1074/jbc.M205375200 pmid: 12077151
[126] Samarakoon T, Shiva S, Lowe K, et al. Arabidopsis thaliana membrane lipid molecular species and their mass spectral analysis. Methods in Molecular Biology, 2012, 918: 179-268.
doi: 10.1007/978-1-61779-995-2_13 pmid: 22893293
[127] Hong Y Y, Devaiah S P, Bahn S C, et al. Phospholipase D epsilon and phosphatidic acid enhance Arabidopsis nitrogen signaling and growth. The Plant Journal, 2009, 58(3): 376-387.
doi: 10.1111/j.1365-313X.2009.03788.x
[128] Schuhmann K, Herzog R, Schwudke D, et al. Bottom-up shotgun lipidomics by higher energy collisional dissociation on LTQ orbitrap mass spectrometers. Analytical Chemistry, 2011, 83(14): 5480-5487.
doi: 10.1021/ac102505f pmid: 21634439
[129] Jia W, Du A, Fan Z B, et al. Novel top-down high-resolution mass spectrometry-based metabolomics and lipidomics reveal molecular change mechanism in A 2 milk after CSN2 gene mutation. Food Chemistry, 2022, 391: 133270.
doi: 10.1016/j.foodchem.2022.133270
[130] Reis A, Rudnitskaya A, Chariyavilaskul P, et al. Top-down lipidomics of low density lipoprotein reveal altered lipid profiles in advanced chronic kidney disease. Journal of Lipid Research, 2015, 56(2): 413-422.
doi: 10.1194/jlr.M055624 pmid: 25424003
[131] Schuhmann K, Moon H, Thomas H, et al. Quantitative fragmentation model for bottom-up shotgun lipidomics. Analytical Chemistry, 2019, 91(18): 12085-12093.
doi: 10.1021/acs.analchem.9b03270 pmid: 31441640
[132] Eggers L F, Schwudke D. Shotgun lipidomics approach for clinical samples. Methods in Molecular Biology, 2018, 2018, 1730: 163-174.
doi: 10.1007/978-1-4939-7592-1_12 pmid: 29363073
[133] Ekroos K, Chernushevich I V, Simons K, et al. Quantitative profiling of phospholipids by multiple precursor ion scanning on a hybrid quadrupole time-of-flight mass spectrometer. Analytical Chemistry, 2002, 74(5): 941-949.
doi: 10.1021/ac015655c pmid: 11924996
[134] Qin Z, Wang W, Liao D, et al. UPLC-Q/TOF-MS-based serum metabolomics reveals hypoglycemic effects of Rehmannia glutinosa, Coptis chinensis and their combination on high-fat-diet-induced diabetes in KK-Ay mice. International Journal of Molecular Sciences, 2018, 19(12): 3984.
doi: 10.3390/ijms19123984
[135] Wang J S, Xu L, Xu Z Z, et al. Liquid chromatography quadrupole time-of-flight mass spectrometry and rapid evaporative ionization mass spectrometry were used to develop a lamb authentication method: a preliminary study. Foods (Basel, Switzerland), 2020, 9(12): 1723.
[136] Vavrušová A, Vrkoslav V, Plavka R, et al. Analysis of (O-acyl) alpha- and omega-hydroxy fatty acids in vernix caseosa by high-performance liquid chromatography-orbitrap mass spectrometry. Analytical and Bioanalytical Chemistry, 2020, 412(10): 2291-2302.
doi: 10.1007/s00216-019-02348-2 pmid: 31907593
[137] Ventura G, Calvano C D, Cinquepalmi V, et al. Characterization of glucuronosyl-diacyl/monoacylglycerols and discovery of their acylated derivatives in tomato lipid extracts by reversed-phase liquid chromatography with electrospray ionization and tandem mass spectrometry. Journal of the American Society for Mass Spectrometry, 2021, 32(8): 2227-2240.
doi: 10.1021/jasms.1c00162 pmid: 34260857
[138] Buas M F, Drescher C W, Urban N, et al. Quantitative global lipidomics analysis of patients with ovarian cancer versus benign adnexal mass. Scientific Reports, 2021, 11: 18156.
doi: 10.1038/s41598-021-97433-x pmid: 34518593
[139] Fatima Z, Nandan S, Hameed S. Understanding mass spectrometry-based global mycobacterial lipidomics. Current Molecular Medicine, 2020, 20(8): 607-623.
doi: 10.2174/1566524020666200206120840
[140] Pan M X, Qin C, Han X L. Lipid metabolism and lipidomics applications in cancer research. Advances in Experimental Medicine and Biology, 2021, 1316: 1-24.
doi: 10.1007/978-981-33-6785-2_1 pmid: 33740240
[141] Sampaio J L, Gerl M J, Klose C, et al. Membrane lipidome of an epithelial cell line. PNAS, 2011, 108(5): 1903-1907.
doi: 10.1073/pnas.1019267108 pmid: 21245337
[142] Coniglio D, Bianco M, Ventura G, et al. Lipidomics of the edible brown alga wakame (Undaria pinnatifida) by liquid chromatography coupled to electrospray ionization and tandem mass spectrometry. Molecules (Basel, Switzerland), 2021, 26(15): 4480.
doi: 10.3390/molecules26154480
[143] Schlecht J, Jooβ K, Neusüβ C. Two-dimensional capillary electrophoresis-mass spectrometry (CE-CE-MS): coupling MS-interfering capillary electromigration methods with mass spectrometry. Analytical and Bioanalytical Chemistry, 2018, 410(25): 6353-6359.
doi: 10.1007/s00216-018-1157-9 pmid: 29862434
[144] Yang K, Jenkins C M, Dilthey B, et al. Multidimensional mass spectrometry-based shotgun lipidomics analysis of vinyl ether diglycerides. Analytical and Bioanalytical Chemistry, 2015, 407(17): 5199-5210.
doi: 10.1007/s00216-015-8640-3 pmid: 25822162
[145] Gao F, McDaniel J, Chen E Y, et al. Adapted MS/MSALL shotgun lipidomics approach for analysis of cardiolipin molecular species. Lipids, 2018, 53(1): 133-142.
doi: 10.1002/lipd.12004
[146] Roy J, Dibaeinia P, Fan T M, et al. Global analysis of osteosarcoma lipidomes reveal altered lipid profiles in metastatic versus nonmetastatic cells. Journal of Lipid Research, 2019, 60(2): 375-387.
doi: 10.1194/jlr.M088559 pmid: 30504231
[147] Djambazova K V, Klein D R, Migas L G, et al. Resolving the complexity of spatial lipidomics using MALDI TIMS imaging mass spectrometry. Analytical Chemistry, 2020, 92(19): 13290-13297.
doi: 10.1021/acs.analchem.0c02520
[148] Lellman S E, Cramer R. Bacterial identification by lipid profiling using liquid atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry. Clinical Chemistry and Laboratory Medicine, 2020, 58(6): 930-938.
doi: 10.1515/cclm-2019-0908 pmid: 31851611
[149] Bodzon-Kulakowska A, Arena R, Mielczarek P, et al. Mouse single oocyte imaging by MALDI-TOF MS for lipidomics. Cytotechnology, 2020, 72(3): 455-468.
doi: 10.1007/s10616-020-00393-9 pmid: 32274610
[150] Kostyukevich Y, Vladimirov G, Stekolschikova E, et al. Hydrogen/deuterium exchange aiding compound identification for LC-MS and MALDI imaging lipidomics. Analytical Chemistry, 2019, 91(21): 13465-13474.
doi: 10.1021/acs.analchem.9b02461 pmid: 31490663
[151] Wei Y B, Zhang Y Y, Lin Y, et al. A uniform 2, 5-dihydroxybenzoic acid layer as a matrix for MALDI-FTICR MS-based lipidomics. The Analyst, 2015, 140(4): 1298-1305.
doi: 10.1039/C4AN01964D
[152] Shanta P V, Li B C, Stuart D D, et al. Lipidomic profiling of algae with microarray MALDI-MS toward ecotoxicological monitoring of herbicide exposure. Environmental Science & Technology, 2021, 55(15): 10558-10568.
doi: 10.1021/acs.est.1c01138
[153] Liu H X, Wang S Q, Lin J M, et al. Investigation of the lipidomic changes in differentiated glioblastoma cells after drug treatment using MALDI-MS. Talanta, 2021, 233: 122570.
doi: 10.1016/j.talanta.2021.122570
[154] Kotnala A, Anderson D M G, Patterson N H, et al. Tissue fixation effects on human retinal lipid analysis by MALDI imaging and LC-MS/MS technologies. Journal of Mass Spectrometry, 2021, 56(12): e4798.
doi: 10.1002/jms.4798 pmid: 34881479
[155] Wäldchen F, Mohr F, Wagner A H, et al. Multifunctional reactive MALDI matrix enabling high-lateral resolution dual polarity MS imaging and lipid C=C position-resolved MS2 imaging. Analytical Chemistry, 2020, 92(20): 14130-14138.
doi: 10.1021/acs.analchem.0c03150
[156] Gidden J, Denson J, Liyanage R, et al. Lipid compositions in Escherichia coli and Bacillus subtilis during growth as determined by MALDI-TOF and TOF/TOF mass spectrometry. International Journal of Mass Spectrometry, 2009, 283(1-3): 178-184.
doi: 10.1016/j.ijms.2009.03.005
[157] Petković M, Müller J, Schiller J, et al. Application of matrix-assisted laser desorption and ionization time-of-flight mass spectrometry for the characterization of the substrate specificity of neutrophil phospholipase A2. Microchemical Journal, 2005, 80(1): 31-37.
doi: 10.1016/j.microc.2004.09.005
[158] Li A, Hines K M, Xu L B. Lipidomics by HILIC-ion mobility-mass spectrometry. Methods in Molecular Biology, 2020, 2084: 119-132.
doi: 10.1007/978-1-0716-0030-6_7 pmid: 31729657
[159] Bouza M, Li Y F, Wang A C, et al. Triboelectric nanogenerator ion mobility-mass spectrometry for in-depth lipid annotation. Analytical Chemistry, 2021, 93(13): 5468-5475.
doi: 10.1021/acs.analchem.0c05145 pmid: 33720699
[160] Freeman C, Hynds H M, Carpenter J M, et al. Revealing fatty acid heterogeneity in staphylococcal lipids with isotope labeling and RPLC-IM-MS. Journal of the American Society for Mass Spectrometry, 2021, 32(9): 2376-2385.
doi: 10.1021/jasms.1c00092 pmid: 34014662
[161] Morris C B, Poland J C, May J C, et al. Fundamentals of ion mobility-mass spectrometry for the analysis of biomolecules. Methods in Molecular Biology, 2020, 2084: 1-31.
doi: 10.1007/978-1-0716-0030-6_1 pmid: 31729651
[162] Jackson S N, Woods A S. Direct profiling of tissue lipids by MALDI-TOFMS. Journal of Chromatography B, 2009, 877(26): 2822-2829.
doi: 10.1016/j.jchromb.2008.11.033 pmid: 19095508
[163] Jackson S N, Ugarov M, Post J D, et al. A study of phospholipids by ion mobility TOFMS. Journal of the American Society for Mass Spectrometry, 2008, 19(11): 1655-1662.
doi: 10.1016/j.jasms.2008.07.005 pmid: 18703352
[164] Bagley M C, Ekelöf M, Muddiman D C. Determination of optimal electrospray parameters for lipidomics in infrared-matrix-assisted laser desorption electrospray ionization mass spectrometry imaging. Journal of the American Society for Mass Spectrometry, 2020, 31(2): 319-325.
doi: 10.1021/jasms.9b00063 pmid: 32031399
[165] Hou J J, Zhang Z J, Zhang L L, et al. Spatial lipidomics of eight edible nuts by desorption electrospray ionization with ion mobility mass spectrometry imaging. Food Chemistry, 2022, 371: 130893.
doi: 10.1016/j.foodchem.2021.130893
[166] Nguyen S N, Kyle J E, Dautel S E, et al. Lipid coverage in nanospray desorption electrospray ionization mass spectrometry imaging of mouse lung tissues. Analytical Chemistry, 2019, 91(18): 11629-11635.
doi: 10.1021/acs.analchem.9b02045 pmid: 31412198
[167] Zhang X J, Wu C B, Tan W. Brain lipid dynamics in amyloid precursor protein/presenilin 1 mouse model of early Alzheimer’s disease by desorption electrospray ionization and matrix assisted laser desorption ionization-mass spectrometry imaging techniques. Journal of Proteome Research, 2021, 20(5): 2643-2650.
doi: 10.1021/acs.jproteome.0c01050
[168] Škrášková K, Claude E, Jones E A, et al. Enhanced capabilities for imaging gangliosides in murine brain with matrix-assisted laser desorption/ionization and desorption electrospray ionization mass spectrometry coupled to ion mobility separation. Methods, 2016, 104: 69-78.
doi: 10.1016/j.ymeth.2016.02.014 pmid: 26922843
[169] Alexandrino G L, Tomasi G, Kienhuis P G M, et al. Forensic investigations of diesel oil spills in the environment using comprehensive two-dimensional gas chromatography-high resolution mass spectrometry and chemometrics: new perspectives in the absence of recalcitrant biomarkers. Environmental Science & Technology, 2019, 53(1): 550-559.
doi: 10.1021/acs.est.8b05238
[170] Dolan Jr M J, Li W Q, Jorabchi K. Detection and diversity of fluorinated oil- and water-repellent coatings on apparel fibers. Journal of Forensic Sciences, 2021, 66(4): 1285-1299.
doi: 10.1111/1556-4029.14711 pmid: 33864266
[171] 周莉英, 王鑫, 向平. 质谱成像技术及其在法医毒理学中的应用. 法医学杂志, 2021, 37(3): 402-411.
doi: 10.12116/j.issn.1004-5619.2020.300502 pmid: 34379912
Zhou L Y, Wang X, Xiang P. Mass spectrometry imaging and its application in forensic toxicology. Journal of Forensic Medicine, 2021, 37(3): 402-411.
doi: 10.12116/j.issn.1004-5619.2020.300502 pmid: 34379912
[172] Pavlovich M J, Musselman B, Hall A B. Direct analysis in real time-mass spectrometry (DART-MS) in forensic and security applications. Mass Spectrometry Reviews, 2018, 37(2): 171-187.
doi: 10.1002/mas.21509 pmid: 27271453
[173] Hinners P, O’Neill K C, Lee Y J. Revealing individual lifestyles through mass spectrometry imaging of chemical compounds in fingerprints. Scientific Reports, 2018, 8(1): 5149.
doi: 10.1038/s41598-018-23544-7 pmid: 29581473
[174] 时秋娜, 刘占芳, 朱军, 等. 全二维气相色谱-质谱法检测动植物油. 中国油脂, 2017, 42(6): 138-142.
Shi Q N, Liu Z F, Zhu J, et al. Detection of fatty acids in animal fats and vegetable oils by comprehensive two-dimensional gas chromatography coupled with mass spectrometry. China Oils and Fats, 2017, 42(6): 138-142.
[175] Frick A A, Kummer N, Moraleda A, et al. Changes in latent fingermark glyceride composition as a function of sample age using UPLC-IMS-QToF-MSE. The Analyst, 2020, 145(12): 4212-4223.
doi: 10.1039/D0AN00379D
[176] Yan L, Han P, Man J, et al. Discovery of lipid profiles of type 2 diabetes associated with hyperlipidemia using untargeted UPLC Q-TOF/MS-based lipidomics approach. Clinica Chimica Acta, 2021, 520: 53-62.
doi: 10.1016/j.cca.2021.05.031 pmid: 34077755
[1] 孙彩霞, 汪莹, 吴晓菲, 陈利军, 武志杰. 转基因抗虫棉棉籽组分的代谢组学研究[J]. 中国生物工程杂志, 2012, 32(11): 35-41.
[2] 孙彩霞, 汪莹, 吴晓菲, 陈利军, 武志杰. 转基因抗虫棉棉籽组分的代谢组学研究[J]. 中国生物工程杂志, 2012, 32(11): 35-41.