Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (1): 71-86    DOI: 10.13523/j.cb.2207066
综述     
植物生物反应器优化策略与最新应用*
邹奇1,2,潘炜松3,邱健4,束文圣2,吴川1,**()
1 中南大学冶金与环境学院 长沙 410083
2 华南师范大学生命科学学院 广州 510631
3 湖南诺合新生物科技有限公司 长沙 410016
4 中南大学湘雅医院 长沙 410008
Recent Advances in Optimization Strategies and Applications of Plant Bioreactors
ZOU Qi1,2,PAN Wei-song3,QIU Jian4,SHU Wen-sheng2,WU Chuan1,**()
1 School of Metallurgy and Environment, Central South University, Changsha 410083, China
2 School of Life Sciences, South China Normal University, Guangzhou 510631, China
3 Hunan Novomore Biotechnology Corporation, Changsha 410016, China
4 Xiangya Hospital, Central South University, Changsha 410008, China
 全文: PDF(1858 KB)   HTML
摘要:

随着分子生物学和植物基因工程的迅猛发展以及分子医药和现代农业等学科的交叉融合,植物生物反应器已成为分子医药农业的核心内容。利用植物生物反应器生产抗体、疫苗和功能性食品,具有规模化、成本低、安全性高、周期短等优势。2022年2月,加拿大卫生部批准了新型冠状病毒疫苗Covifenz®,这是世界首款植物源人体疫苗,标志着以植物生物反应器为代表的分子医药农业时代的来临。综述植物叶片和种子等代表性的植物生物反应器类型,分析瞬时表达系统和稳定表达系统的构建原理和应用,探讨通过启动子和密码子优化、糖基化过程“人源化”、基因沉默抑制和蛋白酶作用抑制等优化植物生物反应器的策略,总结国内外抗体、疫苗和功能性食品等植物源产品的开发进展,以期为我国植物生物反应器的研究及其在分子医药领域的应用提供参考。

关键词: 植物生物反应器分子医药农业外源蛋白瞬时和稳定表达    
Abstract:

Plant bioreactors have been the central part of molecular pharming. Vaccines, antibodies and functional foods produced by plant bioreactors with the benefits of cost-effectiveness, high scalability, rapid production, enabling post-translational modification, and no harmful pathogens contamination are increasingly accepted by the public. In February 2022, Health Canada approved the world’s first plant-derived human vaccine Covifenz® for the prevention and treatment of COVID-19, marking the advent of the era of molecular pharming represented by plant bioreactors. This paper elaborates the development history of plant bioreactors, with the main host species representatives of leafy plants and seed plants, the stable and transient expression systems construction for various applications, as well as the enhancement strategies through promoter and codon optimization, “humanization” of glycosylation process, inhibition of gene silencing and protease activity, and also summarize the application of plant-derived protein products, which aim to provide a theoretical and application basis for the development of plant bioreactors.

Key words: Plant bioreactor    Molecular pharming    Heterologous proteins    Transient and stable expression
收稿日期: 2022-07-30 出版日期: 2023-02-14
ZTFLH:  Q819  
基金资助: *湖南省自然科学基金(2021JJ30340);国家自然科学基金(31670955);国家自然科学基金(42177392)
通讯作者: **吴川 电子信箱:wuchuan@csu.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
邹奇
潘炜松
邱健
束文圣
吴川

引用本文:

邹奇, 潘炜松, 邱健, 束文圣, 吴川. 植物生物反应器优化策略与最新应用*[J]. 中国生物工程杂志, 2023, 43(1): 71-86.

ZOU Qi, PAN Wei-song, QIU Jian, SHU Wen-sheng, WU Chuan. Recent Advances in Optimization Strategies and Applications of Plant Bioreactors. China Biotechnology, 2023, 43(1): 71-86.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2207066        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I1/71

图1  植物生物反应器构建过程及体系[78-79]
图2  植物生物反应器外源蛋白生产流程及优化策略[61-62]
产品 应用 宿主 临床试验阶段 来源
Covifenz? 新冠病毒疫苗 烟草 获批上市 Medicago, Canada
胃脂肪酶 囊性纤维化、胰腺炎 玉米 II期临床 http://www.meristem.com
乳铁蛋白 胃肠感染 玉米 I期临床 http://www.meristem.com
PRX-102 法布里病 烟草细胞
培养液
II期临床 https://clini caltrials.Gov
自体FL疫苗 非霍奇金淋巴瘤 烟草 I期临床 Icon Genetics GmbH, Germany
疫苗重组保护性抗原(PA83-FhCMB) 炭疽病 烟草 I期临床 FhCMB, USA
疫苗Pfs25病毒样颗粒 疟疾 烟草 I期临床 FhCMB, USA
药物(zmapp) 埃博拉病毒感染 烟草 I期临床和II期临床 LeafBio (NIAID), Canada
四价VLP H1N1、H3N2和季节性乙型流感病毒感染 烟草 III期临床 Medicago, Canada
流感病毒(H1N1) HA 流感 烟草 I期临床 FhCMB, USA
RhinoRx 鼻病毒感染 烟草 II期临床 http://www.plant biote
chnology.com
P2G12 IgG抗体 HIV感染 烟草 I期临床 University of Surrey, UK
LSBC scFVs 非霍奇金淋巴瘤 烟草 I期临床 McCormick et al., 2011[122]
H7 VLP H7N9大流行性流感病毒疫苗 烟草 I期临床 Medicago, Canada
H5-VLP + GLA-AF疫苗 甲型流感、H5N1亚型感染 烟草 I期临床 Medicago, Canada
H5-VLP H5N1大流行性流感病毒疫苗 烟草 I期临床和II期临床 Medicago, Canada
H1 VLP 季节性流感 烟草 I期临床 Medicago, Canada
CaroRX人源化小鼠抗体 龋齿 烟草 II期临床 Ma et al., 1998[123]
人血清白蛋白 维持血压 亚麻 临床前 Agragen (Cincinatti,OH,USA)
人α-半乳糖苷酶A 法布里病 苔藓 I期临床 Greenovation Biotech GmbH,
Germany
重组乳铁蛋白 HIV患者抗感染治疗 水稻 II期临床 Jason Baker (MMRF), USA
霍乱弧菌CTB 霍乱 水稻 I期临床 Nochi et al., 2007[124]
rhLactoferrin 治疗老年慢性炎症 水稻 II期临床 Johns Hopkins University, USA
重组人内因子 维生素B12不足 拟南芥 II期临床 https://clini caltr ials.gov
乙型肝炎病毒表面抗原 乙型肝炎 马铃薯 I期临床 Thanavala et al., 2005[125]
诺沃克病毒CP 腹泻 马铃薯 I期临床早期 Tacket et al., 2004[126]
产肠毒素大肠杆菌LT-B 腹泻 马铃薯 I期临床早期 Zhou et al., 2015[127]
重组葡糖脑苷脂酶(prGCD) 戈谢病 胡萝卜细
胞培养液
III期临床和FDA认证 University in Aarhus, Denmark
乙酰胆碱酯酶(PRX-105) 生化防御 胡萝卜细
胞培养液
I期临床 Protalix
产品 应用 宿主 临床试验阶段 来源
抗肿瘤坏死因子(Pr-anti-TNF) 关节炎 胡萝卜细
胞培养液
临床前 Protalix
胰岛素(SBS-1000) 糖尿病 红花 I期临床和II期临床 Markley et al., 2006
Apo-A1Milano 心血管疾病 红花 临床前 http://www.sembi osys.com
重组血纤维蛋白溶酶(BLX-155) 血栓预防 浮萍属
(莴苣)
临床前 Biolex therapeutics (Pittsboro, NC, USA)
乳铁蛋白 抗丙肝病毒感染治疗 浮萍属
(莴苣)
I期临床和II期临床 Biolex Therapeutics, USA
改良α-干扰素(locteron R) 丙型肝炎 浮萍属
(莴苣)
II期临床 Biolex therapeutics (Pittsboro, NC, USA)
Anti-CD20单克隆抗体(BLX-301) 非霍奇金淋巴瘤 浮萍属
(莴苣)
临床前 Biolex therapeutics (Pittsboro, NC, USA)
狂犬病病毒GP/NP 狂犬病 菠菜 I期临床早期 Yusibov et al., 2002[128]
表1  植物生物反应器生产医药产品及临床试验阶段[62,79]
产品类型 事件名称 导入基因 产品 宿主
维生素A 黄金水稻 crt1psy1 植物烯去饱和酶CRTI和植物烯合成ZmPSY1 水稻
赖氨酸 LY038/LY038×MON810 CordapA 二氢吡啶二羧酸合成酶 玉米
油酸 G94-1,G94-19和G168 gm-fad2-1(沉默位点) fad2-1基因通过基因沉默机制抑制产生内源性delta-12去饱和酶 大豆
油酸 DP305423/DP305423×GTS40-3-2/
DP305423×MON87708×MON89788/
gm-fad2-1(部分序列) fad2-1基因通过基因沉默机制抑制产生内源性delta-12去饱和酶 大豆
油酸 MON87705/MON87705×
MON87708MON89788/MON87705×MON89788
fatb1-A(义段和反义段)和fad2-1A(义段和反义段) FATB酶或酰基-酰基载体蛋白硫酯酶的生产被RNA干扰抑制/delta-12去饱和酶的产生被RNA干扰抑制 大豆
亚麻油酸 MON87769 Pj.D6DNc.Fad3 delta-6去饱和酶蛋白和delta-15去饱和酶蛋白 大豆
高含量纤维 - - - 小麦
无谷蛋白 - 谷蛋白基因 - 小麦
牛奶/奶酪 - 未知 - 微藻
表2  植物生物反应器生产相关功能性食品[129]
[1] Huebbers J W, Buyel J F. On the verge of the market - plant factories for the automated and standardized production of biopharmaceuticals. Biotechnology Advances, 2021, 46: 107681.
doi: 10.1016/j.biotechadv.2020.107681
[2] Ghag S B, Adki V S, Ganapathi T R, et al. Plant platforms for efficient heterologous protein production. Biotechnology and Bioprocess Engineering: BBE, 2021, 26(4): 546-567.
doi: 10.1007/s12257-020-0374-1
[3] 张丹凤, 余自青, 吴锁伟, 等. 植物生物反应器在分子医药农业中的应用. 中国生物工程杂志, 2016, 36(1): 86-94.
Zhang D F, Yu Z Q, Wu S W, et al. Progress of plant as bioreactor in molecular pharming. China Biotechnology, 2016, 36(1): 86-94.
[4] Fausther-Bovendo H, Kobinger G. Plant-made vaccines and therapeutics. Science, 2021, 373(6556): 740-741.
doi: 10.1126/science.abf5375 pmid: 34385382
[5] Barta A, Sommergruber K, Thompson D, et al. The expression of a nopaline synthase - human growth hormone chimaeric gene in transformed tobacco and sunflower callus tissue. Plant Molecular Biology, 1986, 6(5): 347-357.
doi: 10.1007/BF00034942 pmid: 24307385
[6] Larrick J W, Yu L, Chen J, et al. Production of antibodies in transgenic plants. Research in Immunology, 1998, 149(6): 603-608.
pmid: 9835425
[7] Sijmons P C, Dekker B M M, Schrammeijer B, et al. Production of correctly processed human serum albumin in transgenic plants. Bio/Technology, 1990, 8(3): 217-221.
[8] Fischer R, Schillberg S, Hellwig S, et al. GMP issues for recombinant plant-derived pharmaceutical proteins. Biotechnology Advances, 2012, 30(2): 434-439.
doi: 10.1016/j.biotechadv.2011.08.007 pmid: 21856403
[9] Fischer R, Buyel J F. Molecular farming - the slope of enlightenment. Biotechnology Advances, 2020, 40: 107519.
doi: 10.1016/j.biotechadv.2020.107519
[10] Buyel J F. Plant molecular farming - integration and exploitation of side streams to achieve sustainable biomanufacturing. Frontiers in Plant Science, 2019, 9: 1893.
doi: 10.3389/fpls.2018.01893
[11] Tripathi N K, Shrivastava A. Recent developments in bioprocessing of recombinant proteins: expression hosts and process development. Frontiers in Bioengineering and Biotechnology, 2019, 7: 420.
doi: 10.3389/fbioe.2019.00420 pmid: 31921823
[12] Makhzoum A, Benyammi R, Moustafa K, et al. Recent advances on host plants and expression cassettes’ structure and function in plant molecular pharming. BioDrugs: Clinical Immunotherapeutics, Biopharmaceuticals and Gene Therapy, 2014, 28(2): 145-159.
[13] Gomes C, Oliveira F, Isabel Vieira S, et al. Prospects for the production of recombinant therapeutic proteins and peptides in plants: special focus on angiotensin I-converting enzyme inhibitory (ACEI) peptides. London: IntechOpen, 2019: 65771.
[14] Ma J K C, Drossard J, Lewis D, et al. Regulatory approval and a first-in-human phase I clinical trial of a monoclonal antibody produced in transgenic tobacco plants. Plant Biotechnology Journal, 2015, 13(8): 1106-1120.
doi: 10.1111/pbi.12416 pmid: 26147010
[15] Chichester J A, Green B J, Jones R M, et al. Safety and immunogenicity of a plant-produced Pfs25 virus-like particle as a transmission blocking vaccine against malaria: a phase 1 dose-escalation study in healthy adults. Vaccine, 2018, 36(39): 5865-5871.
doi: S0264-410X(18)31159-9 pmid: 30126674
[16] Maharjan P M, Choe S. Plant-based COVID-19 vaccines: current status, design, and development strategies of candidate vaccines. Vaccines, 2021, 9(9): 992.
doi: 10.3390/vaccines9090992
[17] Pillet S, Couillard J, Trépanier S, et al. Immunogenicity and safety of a quadrivalent plant-derived virus like particle influenza vaccine candidate-two randomized phase II clinical trials in 18 to 49 and ≥50 years old adults. PLoS One, 2019, 14(6): e0216533.
doi: 10.1371/journal.pone.0216533
[18] Ancín M, Sanz-Barrio R, Santamaría E, et al. Functional improvement of human cardiotrophin 1 produced in tobacco chloroplasts by co-expression with plastid thioredoxin M. Plants (Basel, Switzerland), 2020, 9(2): 183.
[19] Boyhan D, Daniell H. Low-cost production of proinsulin in tobacco and lettuce chloroplasts for injectable or oral delivery of functional insulin and C-peptide. Plant Biotechnology Journal, 2011, 9(5): 585-598.
doi: 10.1111/j.1467-7652.2010.00582.x pmid: 21143365
[20] Rosales-Mendoza S, Soria-Guerra R E, Moreno-Fierros L, et al. Expression of an immunogenic F1-V fusion protein in lettuce as a plant-based vaccine against plague. Planta, 2010, 232(2): 409-416.
doi: 10.1007/s00425-010-1176-z pmid: 20461403
[21] Obembe O O, Popoola J O, Leelavathi S, et al. Advances in plant molecular farming. Biotechnology Advances, 2011, 29(2): 210-222.
doi: 10.1016/j.biotechadv.2010.11.004 pmid: 21115109
[22] Marcondes J, Hansen E. Transgenic lettuce seedlings carrying hepatitis B virus antigen HBsAg. The Brazilian Journal of Infectious Diseases, 2008, 12(6): 469-471.
doi: 10.1590/S1413-86702008000600004
[23] Matsui T, Takita E, Sato T, et al. Production of double repeated B subunit of Shiga toxin 2e at high levels in transgenic lettuce plants as vaccine material for porcine edema disease. Transgenic Research, 2011, 20(4): 735-748.
doi: 10.1007/s11248-010-9455-9
[24] Kim Y S, Kim B G, Kim T G, et al. Expression of a cholera toxin B subunit in transgenic lettuce (Lactuca sativa L.) using Agrobacterium-mediated transformation system. Plant Cell, Tissue and Organ Culture, 2006, 87(2): 203-210.
doi: 10.1007/s11240-006-9156-5
[25] Li H Y, Ramalingam S, Chye M L. Accumulation of recombinant SARS-CoV spike protein in plant cytosol and chloroplasts indicate potential for development of plant-derived oral vaccines. Experimental Biology and Medicine (Maywood, N J), 2006, 231(8): 1346-1352.
[26] Huy N X, Yang M S, Kim T G. Expression of a cholera toxin B subunit-neutralizing epitope of the porcine epidemic diarrhea virus fusion gene in transgenic lettuce (Lactuca sativa L.). Molecular Biotechnology, 2011, 48(3): 201-209.
doi: 10.1007/s12033-010-9359-1
[27] Tokuhara D, Yuki Y, Nochi T, et al. Secretory IgA-mediated protection against V. cholerae and heat-labile enterotoxin-producing enterotoxigenic Escherichia coli by rice-based vaccine. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(19): 8794-8799.
[28] Tokuhara D, Álvarez B, Mejima M, et al. Rice-based oral antibody fragment prophylaxis and therapy against rotavirus infection. The Journal of Clinical Investigation, 2013, 123(9): 3829-3838.
doi: 10.1172/JCI70266
[29] Yuki Y, Nojima M, Hosono O, et al. Oral MucoRice-CTB vaccine for safety and microbiota-dependent immunogenicity in humans: a phase 1 randomised trial. The Lancet Microbe, 2021, 2(9): e429-e440.
doi: 10.1016/S2666-5247(20)30196-8
[30] Nahampun H N, Bosworth B, Cunnick J, et al. Expression of H3N2 nucleoprotein in maize seeds and immunogenicity in mice. Plant Cell Reports, 2015, 34(6): 969-980.
doi: 10.1007/s00299-015-1758-0 pmid: 25677970
[31] Hensel G. Genetic transformation of Triticeae cereals - summary of almost three-decade’s development. Biotechnology Advances, 2020, 40: 107484.
doi: 10.1016/j.biotechadv.2019.107484
[32] Mirzaee M, Holásková E, MiČúchová A, et al. Long-lasting stable expression of human LL-37 antimicrobial peptide in transgenic barley plants. Antibiotics (Basel, Switzerland), 2021, 10(8): 898.
[33] Takaiwa F, Yang L J, Takagi H, et al. Development of rice-seed-based oral allergy vaccines containing hypoallergenic Japanese cedar pollen allergen derivatives for immunotherapy. Journal of Agricultural and Food Chemistry, 2019, 67(47): 13127-13138.
doi: 10.1021/acs.jafc.9b05421 pmid: 31682438
[34] Shi Y, Habibi P, Haq A N U, et al. Seed-based system for cost-effective production of vaccine against chronic respiratory disease in chickens. Molecular Biotechnology, 2022. DOI: 10.1007/s12033-022-00554-5.
doi: 10.1007/s12033-022-00554-5
[35] Russell D A, Spatola L A, Dian T, et al. Host limits to accurate human growth hormone production in multiple plant systems. Biotechnology and Bioengineering, 2005, 89(7): 775-782.
pmid: 15696512
[36] Zeitlin L, Pauly M, Whaley K J. Second-generation HIV microbicides: continued development of griffithsin. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(15): 6029-6030.
[37] Perrin Y, Vaquero C, Gerrard I, et al. Transgenic pea seeds as bioreactors for the production of a single-chain Fv fragment (scFV) antibody used in cancer diagnosis and therapy. Molecular Breeding, 2000, 6: 345-352.
doi: 10.1023/A:1009657701588
[38] Soria-Guerra R E, Moreno-Fierros L, Rosales-Mendoza S. Two decades of plant-based candidate vaccines: a review of the chimeric protein approaches. Plant Cell Reports, 2011, 30(8): 1367-1382.
doi: 10.1007/s00299-011-1065-3 pmid: 21505834
[39] Khan I, Daniell H. Oral delivery of therapeutic proteins bioencapsulated in plant cells: preclinical and clinical advances. Current Opinion in Colloid & Interface Science, 2021, 54: 101452.
doi: 10.1016/j.cocis.2021.101452
[40] Rybicki E P. Third international conference on plant-based vaccines and antibodies. Expert Review of Vaccines, 2009, 8(9): 1151-1155.
doi: 10.1586/erv.09.85 pmid: 19722888
[41] Tremblay R, Feng M, Menassa R, et al. High-yield expression of recombinant soybean agglutinin in plants using transient and stable systems. Transgenic Research, 2011, 20(2): 345-356.
doi: 10.1007/s11248-010-9419-0 pmid: 20559869
[42] Chong D K, Langridge W H. Expression of full-length bioactive antimicrobial human lactoferrin in potato plants. Transgenic Research, 2000, 9(1): 71-78.
pmid: 10853271
[43] Arakawa T, Chong D K X, Langridge W H R. Efficacy of a food plant-based oral cholera toxin B subunit vaccine. Nature Biotechnology, 1998, 16(3): 292-297.
pmid: 9528012
[44] Luchakivskaya Y, Kishchenko O, Gerasymenko I, et al. High-level expression of human interferon alpha-2b in transgenic carrot (Daucus carota L.) plants. Plant Cell Reports, 2011, 30(3): 407-415.
doi: 10.1007/s00299-010-0942-5 pmid: 21046110
[45] Rosales-Mendoza S, Soria-Guerra R E, Moreno-Fierros L, et al. Transgenic carrot tap roots expressing an immunogenic F1-V fusion protein from Yersinia pestis are immunogenic in mice. Journal of Plant Physiology, 2011, 168(2): 174-180.
doi: 10.1016/j.jplph.2010.06.012 pmid: 20655621
[46] Shaaltiel Y, Bartfeld D, Hashmueli S, et al. Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher’s disease using a plant cell system. Plant Biotechnology Journal, 2007, 5(5): 579-590.
doi: 10.1111/j.1467-7652.2007.00263.x pmid: 17524049
[47] Moon K B, Park J S, Park Y I, et al. Development of systems for the production of plant-derived biopharmaceuticals. Plants (Basel, Switzerland), 2019, 9(1): 30.
[48] Mirzaee M, Osmani Z, Frébortová J, et al. Recent advances in molecular farming using monocot plants. Biotechnology Advances, 2022, 58: 107913.
doi: 10.1016/j.biotechadv.2022.107913
[49] Dugdale B, Mortimer C L, Kato M, et al. In plant activation: an inducible, hyperexpression platform for recombinant protein production in plants. The Plant Cell, 2013, 25(7): 2429-2443.
doi: 10.1105/tpc.113.113944 pmid: 23839786
[50] Carlsson M L R, Kanagarajan S, Bülow L, et al. Plant based production of myoglobin - a novel source of the muscle heme-protein. Scientific Reports, 2020, 10: 920.
doi: 10.1038/s41598-020-57565-y pmid: 31969582
[51] Fujiuchi N, Matsuda R, Matoba N, et al. Removal of bacterial suspension water occupying the intercellular space of detached leaves after agroinfiltration improves the yield of recombinant hemagglutinin in a Nicotiana benthamiana transient gene expression system. Biotechnology and Bioengineering, 2016, 113(4): 901-906.
doi: 10.1002/bit.25854
[52] Canto T. Transient expression systems in plants: potentialities and constraints. Advances in Experimental Medicine and Biology, 2016, 896: 287-301.
doi: 10.1007/978-3-319-27216-0_18 pmid: 27165332
[53] Gleba Y Y, Tusé D, Giritch A. Plant viral vectors for delivery by Agrobacterium. Current Topics in Microbiology and Immunology, 2014, 375: 155-192.
doi: 10.1007/82_2013_352 pmid: 23949286
[54] Diamos A G, Mason H S. Modifying the replication of geminiviral vectors reduces cell death and enhances expression of biopharmaceutical proteins in Nicotiana benthamiana leaves. Frontiers in Plant Science, 2019, 9: 1974.
doi: 10.3389/fpls.2018.01974
[55] Diamos A G, Hunter J G L, Pardhe M D, et al. High level production of monoclonal antibodies using an optimized plant expression system. Frontiers in Bioengineering and Biotechnology, 2020, 7: 472.
doi: 10.3389/fbioe.2019.00472
[56] Fujiki M, Kaczmarczyk J F, Yusibov V, et al. Development of a new cucumber mosaic virus-based plant expression vector with truncated 3a movement protein. Virology, 2008, 381(1): 136-142.
doi: 10.1016/j.virol.2008.08.022 pmid: 18804833
[57] Rybicki E P. Plant molecular farming of virus-like nanoparticles as vaccines and reagents. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12(2): e1587.
[58] Sander V A, Corigliano M G, Clemente M. Promising plant-derived adjuvants in the development of coccidial vaccines. Frontiers in Veterinary Science, 2019, 6: 20.
doi: 10.3389/fvets.2019.00020 pmid: 30809529
[59] Huang Z, Chen Q, Hjelm B, et al. A DNA replicon system for rapid high-level production of virus-like particles in plants. Biotechnology and Bioengineering, 2009, 103(4): 706-714.
doi: 10.1002/bit.22299 pmid: 19309755
[60] Plesha M A, Huang T K, Dandekar A M, et al. High-level transient production of a heterologous protein in plants by optimizing induction of a chemically inducible viral amplicon expression system. Biotechnology Progress, 2007, 23(6): 1277-1285.
pmid: 17994759
[61] Margolin E A, Strasser R, Chapman R, et al. Engineering the plant secretory pathway for the production of next-generation pharmaceuticals. Trends in Biotechnology, 2020, 38(9): 1034-1044.
doi: S0167-7799(20)30064-0 pmid: 32818443
[62] Sethi L, Kumari K, Dey N. Engineering of plants for efficient production of therapeutics. Molecular Biotechnology, 2021, 63(12): 1125-1137.
doi: 10.1007/s12033-021-00381-0 pmid: 34398446
[63] Fausther-Bovendo H, Kobinger G. Plant-made vaccines and therapeutics. Science, 2021, 373(6556): 740-741.
doi: 10.1126/science.abf5375 pmid: 34385382
[64] Soh H S, Chung H Y, Lee H H, et al. Expression and functional validation of heat-labile enterotoxin B (LTB) and cholera toxin B (CTB) subunits in transgenic rice (Oryza sativa). SpringerPlus, 2015, 4: 148.
doi: 10.1186/s40064-015-0847-4 pmid: 25853032
[65] Sherman A, Su J, Lin S N, et al. Suppression of inhibitor formation against FVIII in a murine model of hemophilia a by oral delivery of antigens bioencapsulated in plant cells. Blood, 2014, 124(10): 1659-1668.
doi: 10.1182/blood-2013-10-528737 pmid: 24825864
[66] Kwon K C, Sherman A, Chang W J, et al. Expression and assembly of largest foreign protein in chloroplasts: oral delivery of human FVIII made in lettuce chloroplasts robustly suppresses inhibitor formation in haemophilia A mice. Plant Biotechnology Journal, 2018, 16(6): 1148-1160.
doi: 10.1111/pbi.12859
[67] Daniell H, Mangu V, Yakubov B, et al. Investigational new drug enabling angiotensin oral-delivery studies to attenuate pulmonary hypertension. Biomaterials, 2020, 233: 119750.
doi: 10.1016/j.biomaterials.2019.119750
[68] Ruhlman T, Verma D, Samson N, et al. The role of heterologous chloroplast sequence elements in transgene integration and expression. Plant Physiology, 2010, 152(4): 2088-2104.
doi: 10.1104/pp.109.152017 pmid: 20130101
[69] Su J, Zhu L Q, Sherman A, et al. Low cost industrial production of coagulation factor IX bioencapsulated in lettuce cells for oral tolerance induction in hemophilia B. Biomaterials, 2015, 70: 84-93.
doi: 10.1016/j.biomaterials.2015.08.004 pmid: 26302233
[70] Kumar S, Dhingra A, Daniell H. Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiology, 2004, 136(1): 2843-2854.
doi: 10.1104/pp.104.045187 pmid: 15347789
[71] Daniell H, Jin S X, Zhu X G, et al. Green giant - a tiny chloroplast genome with mighty power to produce high-value proteins: history and phylogeny. Plant Biotechnology Journal, 2021, 19(3): 430-447.
doi: 10.1111/pbi.13556 pmid: 33484606
[72] Abiri R, Valdiani A, Maziah M, et al. A critical review of the concept of transgenic plants: insights into pharmaceutical biotechnology and molecular farming. Current Issues in Molecular Biology, 2016, 18: 21-42.
pmid: 25944541
[73] Habibi P, Prado G S, Pelegrini P B, et al. Optimization of inside and outside factors to improve recombinant protein yield in plant. Plant Cell, Tissue and Organ Culture (PCTOC), 2017, 130(3): 449-467.
doi: 10.1007/s11240-017-1240-5
[74] Hernandez-Garcia C M, Finer J J. Identification and validation of promoters and cis-acting regulatory elements. Plant Science, 2014, 217-218: 109-119.
[75] Li Y, Yu L P, Wang Q S, et al. Analysis of the promoter of Emb 5 from Zea mays identifies a region of 523 bp responsible for its embryo-specific activity. Plant Molecular Biology Reporter, 2021, 39(2): 288-300.
doi: 10.1007/s11105-020-01251-w
[76] Kallolimath S, Gruber C, Steinkellner H, et al. Promoter choice impacts the efficiency of plant glyco-engineering. Biotechnology Journal, 2018, 13(1): 1700380.
doi: 10.1002/biot.201700380
[77] Efremova L N, Strelnikova S R, Gazizova G R, et al. A synthetic strong and constitutive promoter derived from the Stellaria media pro-SmAMP1 and pro-SmAMP 2 promoters for effective transgene expression in plants. Genes, 2020, 11(12): 1407.
doi: 10.3390/genes11121407
[78] Xu J F, Dolan M C, Medrano G, et al. Green factory: plants as bioproduction platforms for recombinant proteins. Biotechnology Advances, 2012, 30(5): 1171-1184.
doi: 10.1016/j.biotechadv.2011.08.020 pmid: 21924345
[79] Loh H S, Green B J, Yusibov V. Using transgenic plants and modified plant viruses for the development of treatments for human diseases. Current Opinion in Virology, 2017, 26: 81-89.
doi: 10.1016/j.coviro.2017.07.019
[80] Davies J P, Reddy V, Liu X L, et al. Identification and use of the sugarcane bacilliform virus enhancer in transgenic maize. BMC Plant Biology, 2014, 14: 359.
doi: 10.1186/s12870-014-0359-3 pmid: 25526789
[81] Xu L, Li Z Y, Wang S. Development of a virus-based reporter system for functional analysis of plant rRNA gene promoter. Frontiers in Microbiology, 2021, 12: 637347.
doi: 10.3389/fmicb.2021.637347
[82] Patro S, Maiti I B, Dey N. Development of an efficient bi-directional promoter with tripartite enhancer employing three viral promoters. Journal of Biotechnology, 2013, 163(3): 311-317.
doi: 10.1016/j.jbiotec.2012.11.009 pmid: 23183382
[83] Cai Y M, Kallam K, Tidd H, et al. Rational design of minimal synthetic promoters for plants. Nucleic Acids Research, 2020, 48(21): 11845-11856.
doi: 10.1093/nar/gkaa682
[84] Webster G R, Teh A Y H, Ma J K C. Synthetic gene design-the rationale for codon optimization and implications for molecular pharming in plants. Biotechnology and Bioengineering, 2017, 114(3): 492-502.
doi: 10.1002/bit.26183 pmid: 27618314
[85] Suo G L, Chen B, Zhang J Y, et al. Effects of codon modification on human BMP2 gene expression in tobacco plants. Plant Cell Reports, 2006, 25(7): 689-697.
doi: 10.1007/s00299-006-0133-6
[86] Thomas D R, Walmsley A M. Improved expression of recombinant plant-made hEGF. Plant Cell Reports, 2014, 33(11): 1801-1814.
doi: 10.1007/s00299-014-1658-8 pmid: 25048022
[87] Jansing J, Sack M, Augustine S M, et al. CRISPR/Cas9-mediated knockout of six glycosyltransferase genes in Nicotiana benthamiana for the production of recombinant proteins lacking β-1, 2-xylose and core α-1, 3-fucose. Plant Biotechnology Journal, 2019, 17(2): 350-361.
doi: 10.1111/pbi.12981 pmid: 29969180
[88] Lauc G, Essafi A, Huffman J E, et al. Genomics meets glycomics - the first GWAS study of human N-Glycome identifies HNF1α as a master regulator of plasma protein fucosylation. PLoS Genetics, 2010, 6(12): e1001256.
doi: 10.1371/journal.pgen.1001256
[89] Kim H S, Jeon J H, Lee K J, et al. N-glycosylation modification of plant-derived virus-like particles: an application in vaccines. BioMed Research International, 2014, 2014: 249519.
[90] Yin B J, Gao T, Zheng N Y, et al. Generation of glyco-engineered BY 2 cell lines with decreased expression of plant-specific glycoepitopes. Protein & Cell, 2011, 2(1): 41-47.
[91] Castilho A, Strasser R, Stadlmann J, et al. In planta protein sialylation through overexpression of the respective mammalian pathway. Journal of Biological Chemistry, 2010, 285(21): 15923-15930.
doi: 10.1074/jbc.M109.088401 pmid: 20305285
[92] Kallolimath S, Castilho A, Strasser R, et al. Engineering of complex protein sialylation in plants. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(34): 9498-9503.
[93] Jung J W, Shin J H, Lee W K, et al. Inactivation of the β (1, 2)-xylosyltransferase and the α (1, 3)-fucosyltransferase gene in rice (Oryza sativa) by multiplex CRISPR/Cas9 strategy. Plant Cell Reports, 2021, 40(6): 1025-1035.
doi: 10.1007/s00299-021-02667-8
[94] He X, Haselhorst T, von Itzstein M, et al. Production of α-L-iduronidase in maize for the potential treatment of a human lysosomal storage disease. Nature Communications, 2012, 3: 1062.
doi: 10.1038/ncomms2070 pmid: 22990858
[95] Tarquini G, Pagliari L, Ermacora P, et al. Trigger and suppression of antiviral defenses by grapevine pinot gris virus (GPGV): novel insights into virus-host interaction. Molecular Plant-Microbe Interactions, 2021, 34(9): 1010-1023.
doi: 10.1094/MPMI-04-21-0078-R pmid: 33983824
[96] Gazzani S, Lawrenson T, Woodward C, et al. A link between mRNA turnover and RNA interference in Arabidopsis. Science, 2004, 306(5698): 1046-1048.
doi: 10.1126/science.1101092 pmid: 15528448
[97] Moreno A B, Martínez de Alba A E, Bardou F, et al. Cytoplasmic and nuclear quality control and turnover of single-stranded RNA modulate post-transcriptional gene silencing in plants. Nucleic Acids Research, 2013, 41(8): 4699-4708.
doi: 10.1093/nar/gkt152 pmid: 23482394
[98] Huang T K, Falk B W, Dandekar A M, et al. Enhancement of recombinant protein production in transgenic Nicotiana benthamiana plant cell suspension cultures with co-cultivation of Agrobacterium containing silencing suppressors. International Journal of Molecular Sciences, 2018, 19(6): 1561.
doi: 10.3390/ijms19061561
[99] Týcová A, Piernikarczyk R J J, Kugler M, et al. A 5'P degradation hot spot influences molecular farming of anticancerogenic nuclease TBN1 in tobacco cells. Plant Cell, Tissue and Organ Culture (PCTOC), 2016, 127(2): 347-358.
doi: 10.1007/s11240-016-1054-x
[100] Habibi P, Soccol C R, O’Keefe B R, et al. Gene-silencing suppressors for high-level production of the HIV-1 entry inhibitor griffithsin in Nicotiana benthamiana. Process Biochemistry, 2018, 70: 45-54.
doi: 10.1016/j.procbio.2018.04.006
[101] 杨晶, 杜林娜, 王法微, 等. 新型植物生物反应器研究进展. 生物产业技术, 2018(5): 104-109.
Yang J, Du L N, Wang F W, et al. Research on novel plant bioreactors. Biotechnology & Business, 2018(5): 104-109.
[102] Schaller A. A cut above the rest: the regulatory function of plant proteases. Planta, 2004, 220(2): 183-197.
doi: 10.1007/s00425-004-1407-2 pmid: 15517349
[103] Schiermeyer A. Optimizing product quality in molecular farming. Current Opinion in Biotechnology, 2020, 61: 15-20.
doi: S0958-1669(19)30066-7 pmid: 31593785
[104] Grosse-Holz F, Kelly S, Blaskowski S, et al. The transcriptome, extracellular proteome and active secretome of agroinfiltrated Nicotiana benthamiana uncover a large, diverse protease repertoire. Plant Biotechnology Journal, 2018, 16(5): 1068-1084.
doi: 10.1111/pbi.12852 pmid: 29055088
[105] Jutras P V, Marusic C, Lonoce C, et al. An accessory protease inhibitor to increase the yield and quality of a tumour-targeting MAb in Nicotiana benthamiana leaves. PLoS One, 2016, 11(11): e0167086.
doi: 10.1371/journal.pone.0167086
[106] Li S W, Yu B, Byrne G, et al. Identification and CRISPR/Cas 9 inactivation of the c1s protease responsible for proteolysis of recombinant proteins produced in CHO cells. Biotechnology and Bioengineering, 2019, 116(9): 2130-2145.
doi: 10.1002/bit.27016
[107] Paul M, Reljic R, Klein K, et al. Characterization of a plant-produced recombinant human secretory IgA with broad neutralizing activity against HIV. mAbs, 2014, 6(6): 1585-1597.
doi: 10.4161/mabs.36336 pmid: 25484063
[108] Olinger G G Jr, Pettitt J, Kim D, et al. Delayed treatment of Ebola virus infection with plant-derived monoclonal antibodies provides protection in rhesus macaques. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(44): 18030-18035.
[109] Lai H F, He J Y, Hurtado J, et al. Structural and functional characterization of an anti-West Nile virus monoclonal antibody and its single-chain variant produced in glycoengineered plants. Plant Biotechnology Journal, 2014, 12(8): 1098-1107.
doi: 10.1111/pbi.12217 pmid: 24975464
[110] Padler-Karavani V, Varki A. Potential impact of the non-human sialic acid N-glycolylneuraminic acid on transplant rejection risk. Xenotransplantation, 2011, 18(1): 1-5.
doi: 10.1111/j.1399-3089.2011.00622.x pmid: 21342282
[111] Ellison R. Monoclonal antibody therapy for Ebola virus infection. NEJM Journal Watch, 2012. DOI:10.1056/ID201207110000003.
doi: 10.1056/ID201207110000003
[112] Hiatt A, Bohorova N, Bohorov O, et al. Glycan variants of a respiratory syncytial virus antibody with enhanced effector function and in vivo efficacy. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(16): 5992-5997.
[113] Sun H Y, Chen Q, Lai H F. Development of antibody therapeutics against flaviviruses. International Journal of Molecular Sciences, 2017, 19(1): 54.
doi: 10.3390/ijms19010054
[114] Mett V, Chichester J A, Stewart M L, et al. A non-glycosylated, plant-produced human monoclonal antibody against anthrax protective antigen protects mice and non-human Primates from B. anthracis spore challenge. Human Vaccines, 2011, 7 Suppl: 183-190.
pmid: 21270531
[115] Almquist K C, McLean M D, Niu Y Q, et al. Expression of an anti-botulinum toxin a neutralizing single-chain Fv recombinant antibody in transgenic tobacco. Vaccine, 2006, 24(12): 2079-2086.
pmid: 16337316
[116] Bennett L D, Yang Q, Berquist B R, et al. Implementation of glycan remodeling to plant-made therapeutic antibodies. International Journal of Molecular Sciences, 2018, 19(2): 421.
doi: 10.3390/ijms19020421
[117] Marusic C, Novelli F, Salzano A M, et al. Production of an active anti-CD20-hIL-2 immunocytokine in Nicotiana benthamiana. Plant Biotechnology Journal, 2016, 14(1): 240-251.
doi: 10.1111/pbi.12378 pmid: 25879373
[118] Marusic C, Pioli C, Stelter S, et al. N-glycan engineering of a plant-produced anti-CD20-hIL-2 immunocytokine significantly enhances its effector functions. Biotechnology and Bioengineering, 2018, 115(3): 565-576.
doi: 10.1002/bit.26503 pmid: 29178403
[119] Vamvaka E, Twyman R M, Murad A M, et al. Rice endosperm produces an underglycosylated and potent form of the HIV-neutralizing monoclonal antibody 2G12. Plant Biotechnology Journal, 2016, 14(1): 97-108.
doi: 10.1111/pbi.12360 pmid: 25845722
[120] Park J, Yan G, Kwon K C, et al. Oral delivery of novel human IGF-1 bioencapsulated in lettuce cells promotes musculoskeletal cell proliferation, differentiation and diabetic fracture healing. Biomaterials, 2020, 233: 119591.
doi: 10.1016/j.biomaterials.2019.119591
[121] Bird J A, Spergel J M, Jones S M, et al. Efficacy and safety of AR101 in oral immunotherapy for peanut allergy: results of ARC001, a randomized, double-blind, placebo-controlled phase 2 clinical trial. The Journal of Allergy and Clinical Immunology: in Practice, 2018, 6(2): 476-485, e3.
doi: 10.1016/j.jaip.2017.09.016
[122] McCormick A A. Tobacco derived cancer vaccines for non-Hodgkin’s lymphoma: perspectives and progress. Human Vaccines, 2011, 7(3): 305-312.
pmid: 21346416
[123] Ma J K C, Hikmat B Y, Wycoff K, et al. Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans. Nature Medicine, 1998, 4(5): 601-606.
pmid: 9585235
[124] Nochi T, Takagi H, Yuki Y, et al. Rice-based mucosal vaccine as a global strategy for cold-chain- and needle-free vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(26): 10986-10991.
[125] Thanavala Y, Mahoney M, Pal S, et al. Immunogenicity in humans of an edible vaccine for hepatitis B. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(9): 3378-3382.
[126] Tacket C O, Pasetti M F, Edelman R, et al. Immunogenicity of recombinant LT-B delivered orally to humans in transgenic corn. Vaccine, 2004, 22(31-32): 4385-4389.
doi: 10.1016/j.vaccine.2004.01.073 pmid: 15474732
[127] Zhou Z W, Gong S T, Li X M, et al. Expression of Helicobacter pylori urease B on the surface of Bacillus subtilis spores. Journal of Medical Microbiology, 2015, 64(Pt 1): 104-110.
doi: 10.1099/jmm.0.076430-0
[128] Yusibov V, Hooper D C, Spitsin S V, et al. Expression in plants and immunogenicity of plant virus-based experimental rabies vaccine. Vaccine, 2002, 20(25-26): 3155-3164.
doi: 10.1016/s0264-410x(02)00260-8 pmid: 12163267
[129] Long Y, Wei X, Wu S W, et al. Plant molecular farming, a tool for functional food production. Journal of Agricultural and Food Chemistry, 2022, 70(7): 2108-2116.
doi: 10.1021/acs.jafc.1c07185 pmid: 35139640
[130] Su N, Wan X Y, Zhai H Q, et al. Progress and prospect of functional rice researches. Agricultural Sciences in China, 2008, 7(1): 1-9.
doi: 10.1016/S1671-2927(08)60016-4
[131] Garg M, Sharma N, Sharma S, et al. Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Frontiers in Nutrition, 2018, 5: 12.
doi: 10.3389/fnut.2018.00012 pmid: 29492405
[132] Das P, Adak S, Lahiri Majumder A. Genetic manipulation for improved nutritional quality in rice. Frontiers in Genetics, 2020, 11: 776.
doi: 10.3389/fgene.2020.00776 pmid: 32793287
[133] Ye X, Al-Babili S, Klöti A, et al. Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science, 2000, 287(5451): 303-305.
doi: 10.1126/science.287.5451.303 pmid: 10634784
[134] Tamás C, Kisgyörgy B N, Rakszegi M, et al. Transgenic approach to improve wheat (Triticum aestivum L.) nutritional quality. Plant Cell Reports, 2009, 28(7): 1085-1094.
doi: 10.1007/s00299-009-0716-0
[135] Wang C, Zeng J, Li Y, et al. Enrichment of provitamin a content in wheat (Triticum aestivum L.) by introduction of the bacterial carotenoid biosynthetic genes CrtB and CrtI. Journal of Experimental Botany, 2014, 65(9): 2545-2556.
doi: 10.1093/jxb/eru138
[136] Liang Q J, Wang K, Liu X N, et al. Improved folate accumulation in genetically modified maize and wheat. Journal of Experimental Botany, 2019, 70(5): 1539-1551.
doi: 10.1093/jxb/ery453 pmid: 30753561
[1] 张丹凤, 余自青, 吴锁伟, 饶力群, 万向元. 植物生物反应器在分子医药农业中的应用[J]. 中国生物工程杂志, 2016, 36(1): 86-94.
[2] 谢雯琦, 马三梅, 王永飞, 孙小武. 转基因番茄口服疫苗的现状,问题及对策[J]. 中国生物工程杂志, 2014, 34(10): 94-100.
[3] 王玉海, 张慧斌, 杨慧敏, 孟青青, 王凤寰. 乳酸克鲁维酵母的发酵优势及在食品酶制剂领域中的应用[J]. 中国生物工程杂志, 2013, 33(12): 121-126.
[4] 吴永红, 张成岗. HIV-1 TAT蛋白转导肽的研究进展[J]. 中国生物工程杂志, 2010, 30(10): 66-73.
[5] 吴永红 张成岗. HIV-1 TAT蛋白转导肽的研究进展[J]. 中国生物工程杂志, 2010, 30(10): 0-0.
[6] 金丽鑫,赵凌侠. 植物生物反应器研究现状、瓶颈及策略[J]. 中国生物工程杂志, 2009, 29(05): 104-110.
[7] 杜小春,何正权,陈磊,姚伟. 植物生物反应器表达药用蛋白研究新进展[J]. 中国生物工程杂志, 2008, 28(9): 135-143.
[8] 牟琳,王红宁,邹立扣. 巨大芽孢杆菌表达外源蛋白的特点及其研究进展[J]. 中国生物工程杂志, 2008, 28(4): 93-97.
[9] 卢希彬,戴平,郭玉函. 密码子偏爱性与外源蛋白的表达[J]. 中国生物工程杂志, 2006, 26(0): 170-172.
[10] 石晶, 殷涌光, 梁彦龙, 徐力新, 张桂林. 微生物细胞表面呈现技术研究进展[J]. 中国生物工程杂志, 2005, 25(S1): 141-143.
[11] 凌华, 黄惠琴, 鲍时翔. 植物生物反应器研究进展[J]. 中国生物工程杂志, 2002, 22(5): 21-26.
[12] 钟向阳, 石歆莹, 周宏灏. 外源蛋白在大肠杆菌中的表达定位策略[J]. 中国生物工程杂志, 2001, 21(6): 50-53.
[13] 邓兵兵, 熊凌霜. 外源蛋白在芽孢杆菌中分泌表达的研究进展[J]. 中国生物工程杂志, 2000, 20(5): 62-66.
[14] 涂宣林, 宋后燕. P.pastoris高效表达外源蛋白的研究进展[J]. 中国生物工程杂志, 1998, 18(4): 19-22.
[15] 李会成, 李文辉, 郭军, 刘利民. 基因工程菌的发酵研究[J]. 中国生物工程杂志, 1997, 17(2): 39-42.