Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (1): 59-70    DOI: 10.13523/j.cb.2208017
综述     
不同给药途径的治疗性纳米抗体研究进展
吴悦1,2,孙白荷1,2,赵芮3,李延飞2,*(),马琳琳2,*()
1 上海理工大学健康科学与工程学院 上海 200093
2 上海健康医学院医学技术学院 上海 201318
3 上海市东海老年护理医院 上海 201303
Research Progress of Therapeutic Nanobodies with Different Routes of Administration
WU Yue1,2,SUN Bai-he1,2,ZHAO Rui3,LI Yan-fei2,*(),MA Lin-lin2,*()
1 School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2 School of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
3 Shanghai Donghai Geriatric Nursing Hospital, Shanghai 201303, China
 全文: PDF(1238 KB)   HTML
摘要:

骆驼科及鲨鱼科动物血清中天然存在的纳米抗体具有不同于传统单克隆抗体的独特结构和分子量,这为抗体药物开发提供了全新的思路。纳米抗体较小的分子量和优异的稳定性使其在给药方面具有更大的灵活性,可以在一定程度上克服传统单克隆抗体在给药途径方面存在的局限性。同时,较小的分子量使纳米抗体具有双重药代动力学特征,既有优异的组织渗透性,又表现出快速的血液清除。重点介绍纳米抗体的药物代谢动力学特征和进一步改善药代动力学的方法,综述不同给药途径的纳米抗体药物研究进展,对其治疗特定疾病的可行性、安全性以及治疗效果进行分析,以期为纳米抗体药物研发中给药途径的选择提供参考。

关键词: 纳米抗体生物学特性药代动力学给药途径    
Abstract:

The nanobodies naturally existing in the sera of camels and Sharks provide a new idea for the development of antibody drugs because of their unique structural characteristics and molecular weight different from traditional monoclonal antibodies. In particular, the small molecular weight and excellent stability of nanobodies enable them to have greater flexibility in drug delivery. They can withstand harsh biophysical environments and are developed into oral preparations and aerosolized inhalants, which to some extent solves the challenges and limitations of traditional monoclonal antibodies in drug delivery routes. However, the small molecular weight also makes the nanobody have dual pharmacokinetic characteristics after administration, both excellent tissue penetration and rapid blood clearance. Improving the pharmacokinetic characteristics of nanobodies is of great significance to reduce the frequency of drug delivery and drug efficacy. In this review, the biological characteristics of nanobodies were first described, and then the pharmacokinetic characteristics of nanobodies and the methods to further improve the pharmacokinetics were emphatically introduced. On this basis, the research progress of nanobody drugs used for intravenous, subcutaneous, oral and inhalation drug delivery routes was reviewed, the feasibility, safety and therapeutic effect of different drug delivery routes for the treatment of specific diseases were evaluated, and the possible drug delivery routes of nanobodies were also analyzed, so as to provide a reference for the selection of drug delivery routes in the follow-up research and development of nanobody drugs.

Key words: Nanobody    Biological characteristics    Pharmacokinetics    Route of administration
收稿日期: 2022-08-15 出版日期: 2023-02-14
ZTFLH:  Q819  
通讯作者: *李延飞 电子信箱:liyf@sumhs.edu.cn,马琳琳 mall@sumhs.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吴悦
孙白荷
赵芮
李延飞
马琳琳

引用本文:

吴悦, 孙白荷, 赵芮, 李延飞, 马琳琳. 不同给药途径的治疗性纳米抗体研究进展[J]. 中国生物工程杂志, 2023, 43(1): 59-70.

WU Yue, SUN Bai-he, ZHAO Rui, LI Yan-fei, MA Lin-lin. Research Progress of Therapeutic Nanobodies with Different Routes of Administration. China Biotechnology, 2023, 43(1): 59-70.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2208017        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I1/59

图1  源自人和骆驼科动物的抗体及其可变区结构
图2  用于减少给药频率的不同结构纳米抗体、药物递送载体及药物控释系统
给药方式 疾病名称 药物名称 靶点 研究阶段 临床试验编号 参考文献
静脉+皮下给药 获得性血栓血小板减少性紫癜 Caplacizumab(ALX-0081) vWF 上市 - [3]
静脉给药 类风湿性关节炎 Vobanlizumab(ALX-0061) IL-6R IIb期临床 NCT02287922 [39]
癌症(G protein coupled
receptor, GPCR)
ALX-0651 CXCR4 I期临床停止 NCT01374503 -
局部晚期/转移性实体瘤 KN044 CTLA-4 I期临床 NCT04126590 -
实体瘤 TAS266 DR5 I期临床停止 NCT01529307 [42]
鳞状非小细胞肺癌 KN046 PD-L1/CTLA-4 Ⅲ期临床 NCT04474119 -
胸腺癌 KN046 - II期临床 NCT04925947 -
实体瘤 11A4-ABD-AF HER2 临床前 - [40]
神经退行性疾病 BI1034020 I期临床停止 NCT01958060 -
实体瘤 BI836880 VEGF/Ang2 I期临床 NCT02689505 -
实体瘤 S7 ADC EGFR 临床前 - [73]
晚期癌症 JS014 IL-21 I期临床 NCT05296772 -
实体瘤 αPD1-MSLN-CAR T PD-1 I期临床 NCT05373147 -
急性髓性白血病 BissCAR T CD13、TIM3 临床前 - [74]
复发难治多发性骨髓瘤 LCAR-B38M BCMA II期临床 NCT03758417 -
多发性骨髓瘤 JNJ-68284528 BCMA II期临床 NCT04133636 -
多发性骨髓瘤 Ciltacabtagene autoleucel
(cilta-cel)
BCMA IV期临床 NCT05201781 [6,41]
复发/难治性B细胞淋巴瘤 CD19/CD20 bispecific CAR-T CD19/CD20 I期临床 NCT03881761 -
皮下给药 类风湿性关节炎 Ozoralizumab(ATN-103) TNFα Ⅲ期临床 NCT04077567 [48]
斑块型银屑病 Sonelokimab(M1095) IL-17A/IL-17F IIb期临床 NCT03384745 [46]
化脓性汗腺炎 Sonelokimab(M1095) - II期临床 NCT05322473 -
dMMR/MSI-H晚期实体瘤 Envafolimab(KN035) PD-L1 II期临床 NCT03667170 [27,34]
2型糖尿病 Everestmab GLP-1R 临床前 - [47]
骨关节炎 M6495 ADAMTS-5 I期临床 NCT03583346 [45]
慢性乙型肝炎 ASC22 PD-L1 IIb期临床 NCT04465890 [49]
系统性红斑狼疮 Vobarilizumab(ALX-0061) - II期临床 NCT02437890 [39]
口服给药 炎症性肠病(克罗恩病) V565 TNFα II期临床 NCT02976129 [54,56]
炎症性肠病 V56B2 TNF-α/IL-23 临床前 - [57]
儿童腹泻 VHH batch 203027 (ARP1) RV病毒 II期临床 NCT01259765 [58]
腹泻 ARP3-ARP1 RV病毒 临床前 - [60]
腹泻 MucoRice-ARP1 RV病毒 临床前 - [59]
霍乱 Anti-LPS nanobody 霍乱弧菌O1 LPS 临床前 - [75]
空肠弯曲杆菌感染 LMN-101 鞭毛蛋白FlaA II期临床 NCT04182490 -
吸入给药 COVID-19 PiN21 SARS-CoV-2-RBD 临床前 - [63]
COVID-19 K-874A SARS-CoV-2-S1 临床前 - [62]
COVID-19 Nb11-59 SARS-CoV-
2RBD/ACE2
临床前 - [21]
给药方式 疾病名称 药物名称 靶点 研究阶段 临床试验编号 参考文献
COVID-19 Nb15-NbH-Nb15 SARS-CoV-2-RBD 临床前 - [76]
COVID-19 Nb91-Nb3-hFc SARS-CoV-2-RBD 临床前 - [77]
COVID-19 Nb1-Nb2-Fc SARS-CoV-2-RBD 临床前 - [64]
呼吸道肺炎 m17 /m35 RSV F蛋白 临床前 - [78]
呼吸道感染 ALX-0171 RSV病毒 II期临床停止 NCT03418571 [65]
哮喘 LQ036 IL-4Rα I期临床 NCT04993443 -
肌肉注射 流感 R1a-B6-Fc 流感病毒 临床前 - [66]
动脉注射 神经系统疾病/脑恶性肿瘤 NB11 - 临床前 - [67]
眼部给药 视网膜新生血管疾病 BI-X VEGF、Ang-2 临床前 - [70]
腹腔注射(小鼠模型) 发热伴血小板减少综合征 SNB02 SFTSV病毒 临床前 - [69]
狂犬病 Rab-E8/H7 狂犬病病毒 临床前 - [68]
黑色素瘤 2.17-mAlb LepR 临床前 - [79]
表1  不同给药途径的治疗性纳米抗体药物研究进展
[1] Vincke C, Muyldermans S. Introduction to heavy chain antibodies and derived nanobodies. Methods in Molecular Biology (Clifton, N J), 2012, 911: 15-26.
[2] Liu M M, Li L, Jin D, et al. Nanobody - a versatile tool for cancer diagnosis and therapeutics. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13(4): e1697.
[3] Scully M, Cataland S R, Peyvandi F, et al. Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura. The New England Journal of Medicine, 2019, 380(4): 335-346.
doi: 10.1056/NEJMoa1806311 pmid: 30625070
[4] van Roy M, Ververken C, Beirnaert E, et al. The preclinical pharmacology of the high affinity anti-IL-6R Nanobody® ALX-0061 supports its clinical development in rheumatoid arthritis. Arthritis Research & Therapy, 2015, 17(1): 135.
[5] Najmeddin A, Bahrololoumi Shapourabadi M, Behdani M, et al. Nanobodies as powerful pulmonary targeted biotherapeutics against SARS-CoV-2, pharmaceutical point of view. Biochimica et Biophysica Acta (BBA) - General Subjects, 2021, 1865(11): 129974.
doi: 10.1016/j.bbagen.2021.129974
[6] Berdeja J G, Madduri D, Usmani S Z, et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (cartitude-1): a phase 1b/2 open-label study. The Lancet, 2021, 398(10297): 314-324.
doi: 10.1016/S0140-6736(21)00933-8
[7] Steeland S, Vandenbroucke R E, Libert C. Nanobodies as therapeutics: big opportunities for small antibodies. Drug Discovery Today, 2016, 21(7): 1076-1113.
doi: 10.1016/j.drudis.2016.04.003 pmid: 27080147
[8] Parray H A, Shukla S, Perween R, et al. Inhalation monoclonal antibody therapy: a new way to treat and manage respiratory infections. Applied Microbiology and Biotechnology, 2021, 105(16-17): 6315-6332.
doi: 10.1007/s00253-021-11488-4 pmid: 34423407
[9] Gabrielsson J, Green A R, van der Graaf P H. Optimising in vivo pharmacology studies -practical PKPD considerations. Journal of Pharmacological and Toxicological Methods, 2010, 61(2): 146-156.
doi: 10.1016/j.vascn.2010.02.002 pmid: 20153442
[10] Bathula N V, Bommadevara H, Hayes J M. Nanobodies: the future of antibody-based immune therapeutics. Cancer Biotherapy & Radiopharmaceuticals, 2021, 36(2): 109-122.
[11] Mitchell L S, Colwell L J. Comparative analysis of nanobody sequence and structure data. Proteins, 2018, 86(7): 697-706.
doi: 10.1002/prot.25497
[12] Jovčevska I, Muyldermans S. The therapeutic potential of nanobodies. BioDrugs, 2020, 34(1): 11-26.
doi: 10.1007/s40259-019-00392-z pmid: 31686399
[13] Muyldermans S, Cambillau C, Wyns L. Recognition of antigens by single-domain antibody fragments: the superfluous luxury of paired domains. Trends in Biochemical Sciences, 2001, 26(4): 230-235.
pmid: 11295555
[14] Muyldermans S. Nanobodies: natural single-domain antibodies. Annual Review of Biochemistry, 2013, 82: 775-797.
doi: 10.1146/annurev-biochem-063011-092449 pmid: 23495938
[15] Rossotti M A, Bélanger K, Henry K A, et al. Immunogenicity and humanization of single-domain antibodies. The FEBS Journal, 2022, 289(14): 4304-4327.
doi: 10.1111/febs.15809
[16] van Heeke G, Allosery K, de Brabandere V, et al. Nanobodies® as inhaled biotherapeutics for lung diseases. Pharmacology & Therapeutics, 2017, 169: 47-56.
[17] Muyldermans S. A guide to: generation and design of nanobodies. The FEBS Journal, 2021, 288(7): 2084-2102.
doi: 10.1111/febs.15515
[18] Zarschler K, Witecy S, Kapplusch F, et al. High-yield production of functional soluble single-domain antibodies in the cytoplasm of Escherichia coli. Microbial Cell Factories, 2013, 12: 97.
doi: 10.1186/1475-2859-12-97 pmid: 24161153
[19] Xian Z S, Ma L L, Zhu M, et al. Blocking the PD-1-PD-L 1 axis by a novel PD-1 specific nanobody expressed in yeast as a potential therapeutic for immunotherapy. Biochemical and Biophysical Research Communications, 2019, 519(2): 267-273.
doi: 10.1016/j.bbrc.2019.08.160
[20] Gorlani A, de Haard H, Verrips T. Expression of VHHs in Saccharomyces cerevisiae. Methods in Molecular Biology (Clifton, N J), 2012, 911: 277-286.
[21] Gai J W, Ma L L, Li G H, et al. A potent neutralizing nanobody against SARS-CoV-2 with inhaled delivery potential. MedComm, 2021, 2(1): 101-113.
doi: 10.1002/mco2.60 pmid: 33821254
[22] Ackaert C, Smiejkowska N, Xavier C, et al. Immunogenicity risk profile of nanobodies. Frontiers in Immunology, 2021, 12: 632687.
doi: 10.3389/fimmu.2021.632687
[23] Gibaldi M, Levy G. Pharmacokinetics in clinical practice. I. concepts. JAMA, 1976, 235(17): 1864-1867.
[24] Heimbach T, Lakshminarayana S B, Hu W Y, et al. Practical anticipation of human efficacious doses and pharmacokinetics using in vitro and preclinical in vivo data. The AAPS Journal, 2009, 11(3): 602-614.
doi: 10.1208/s12248-009-9136-x
[25] Lwin T M, Hernot S, Hollandsworth H, et al. Tumor-specific near-infrared nanobody probe rapidly labels tumors in an orthotopic mouse model of pancreatic cancer. Surgery, 2020, 168(1): 85-91.
doi: 10.1016/j.surg.2020.02.020
[26] Hmila I, Cosyns B, Tounsi H, et al. Pre-clinical studies of toxin-specific nanobodies: evidence of in vivo efficacy to prevent fatal disturbances provoked by scorpion envenoming. Toxicology and Applied Pharmacology, 2012, 264(2): 222-231.
doi: 10.1016/j.taap.2012.07.033
[27] Papadopoulos K P, Harb W, Peer C J, et al. First-in-human phase I study of envafolimab, a novel subcutaneous single-domain anti-PD-L 1 antibody, in patients with advanced solid tumors. The Oncologist, 2021, 26(9): e1514-e1525.
doi: 10.1002/onco.13817
[28] Li T F, Bourgeois J P, Celli S, et al. Cell-penetrating anti-GFAP VHH and corresponding fluorescent fusion protein VHH-GFP spontaneously cross the blood-brain barrier and specifically recognize astrocytes: application to brain imaging. The FASEB Journal, 2012, 26(10): 3969-3979.
doi: 10.1096/fj.11-201384
[29] Wouters Y, Jaspers T, de Strooper B, et al. Identification and in vivo characterization of a brain-penetrating nanobody. Fluids and Barriers of the CNS, 2020, 17(1): 62.
doi: 10.1186/s12987-020-00226-z pmid: 33054787
[30] Soleimanizadeh A, Dinter H, Schindowski K. Central nervous system delivery of antibodies and their single-domain antibodies and variable fragment derivatives with focus on intranasal nose to brain administration. Antibodies (Basel, Switzerland), 2021, 10(4): 47.
[31] Kijanka M, Dorresteijn B, Oliveira S, et al. Nanobody-based cancer therapy of solid tumors. Nanomedicine (London, England), 2015, 10(1): 161-174.
doi: 10.2217/nnm.14.178
[32] Zaman R, Islam R A, Ibnat N, et al. Current strategies in extending half-lives of therapeutic proteins. Journal of Controlled Release, 2019, 301: 176-189.
doi: S0168-3659(19)30091-4 pmid: 30849445
[33] Kontermann R E. Strategies for extended serum half-life of protein therapeutics. Current Opinion in Biotechnology, 2011, 22(6): 868-876.
doi: 10.1016/j.copbio.2011.06.012 pmid: 21862310
[34] Li J, Deng Y H, Zhang W J, et al. Subcutaneous envafolimab monotherapy in patients with advanced defective mismatch repair/microsatellite instability high solid tumors. Journal of Hematology & Oncology, 2021, 14(1): 95.
[35] Ishiwatari-Ogata C, Kyuuma M, Ogata H, et al. Ozoralizumab, a humanized anti-TNFα NANOBODY® compound, exhibits efficacy not only at the onset of arthritis in a human TNF transgenic mouse but also during secondary failure of administration of an anti-TNFα IgG. Frontiers in Immunology, 2022, 13: 853008.
doi: 10.3389/fimmu.2022.853008
[36] Li L, Zhu Y, Liu M M, et al. Conjugation of oxaliplatin with PEGylated-nanobody for enhancing tumor targeting and prolonging circulation. Journal of Inorganic Biochemistry, 2021, 223: 111553.
doi: 10.1016/j.jinorgbio.2021.111553
[37] Farasat A, Rahbarizadeh F, Ahmadvand D, et al. Effective suppression of tumour cells by oligoclonal HER2-targeted delivery of liposomal doxorubicin. Journal of Liposome Research, 2019, 29(1): 53-65.
doi: 10.1080/08982104.2018.1430829 pmid: 29621912
[38] Nicolas A, Dejoux A, Poirier C, et al. Contribution of intrinsic fluorescence to the design of a new 3D-printed implant for releasing SDABS. Pharmaceutics, 2020, 12(10): 921.
doi: 10.3390/pharmaceutics12100921
[39] Kim G W, Lee N R, Pi R H, et al. IL-6 inhibitors for treatment of rheumatoid arthritis: past, present, and future. Archives of Pharmacal Research, 2015, 38(5): 575-584.
doi: 10.1007/s12272-015-0569-8 pmid: 25648633
[40] Xenaki K T, Dorrestijn B, Muns J A, et al. Homogeneous tumor targeting with a single dose of HER2-targeted albumin-binding domain-fused nanobody-drug conjugates results in long-lasting tumor remission in mice. Theranostics, 2021, 11(11): 5525-5538.
doi: 10.7150/thno.57510 pmid: 33859761
[41] Safarzadeh Kozani P, Naseri A, Mirarefin S M J, et al. Nanobody-based CAR-T cells for cancer immunotherapy. Biomarker Research, 2022, 10(1): 24.
doi: 10.1186/s40364-022-00371-7 pmid: 35468841
[42] Papadopoulos K P, Isaacs R, Bilic S, et al. Unexpected hepatotoxicity in a phase I study of TAS266, a novel tetravalent agonistic Nanobody® targeting the DR5 receptor. Cancer Chemotherapy and Pharmacology, 2015, 75(5): 887-895.
doi: 10.1007/s00280-015-2712-0 pmid: 25721064
[43] Sargentini-Maier M L, de Decker P, Tersteeg C, et al. Clinical pharmacology of caplacizumab for the treatment of patients with acquired thrombotic thrombocytopenic purpura. Expert Review of Clinical Pharmacology, 2019, 12(6): 537-545.
doi: 10.1080/17512433.2019.1607293 pmid: 30977686
[44] Matucci A, Vultaggio A, Danesi R. The use of intravenous versus subcutaneous monoclonal antibodies in the treatment of severe asthma: a review. Respiratory Research, 2018, 19(1): 154.
doi: 10.1186/s12931-018-0859-z pmid: 30115042
[45] Siebuhr A S, Werkmann D, Bay-Jensen A C, et al. The anti-ADAMTS-5 nanobody® M6495 protects cartilage degradation ex vivo. International Journal of Molecular Sciences, 2020, 21(17): 5992.
doi: 10.3390/ijms21175992
[46] Papp K A, Weinberg M A, Morris A, et al. IL17A/F nanobody sonelokimab in patients with plaque psoriasis: a multicentre, randomised, placebo-controlled, phase 2b study. The Lancet, 2021, 397(10284): 1564-1575.
doi: 10.1016/S0140-6736(21)00440-2
[47] Pan H C, Su Y N, Xie Y N, et al. Everestmab, a novel long-acting GLP-1/anti GLP-1R nanobody fusion protein, exerts potent anti-diabetic effects. Artificial Cells, Nanomedicine, and Biotechnology, 2020, 48(1): 854-866.
doi: 10.1080/21691401.2020.1770268
[48] Takeuchi T, Kawanishi M, Nakanishi M, et al. Phase II/III results of a trial of anti-tumor necrosis factor multivalent nanobody compound ozoralizumab in patients with rheumatoid arthritis. Arthritis & Rheumatology, 2022, 74(11): 1776-1785.
[49] Wang G Q, Cui Y M, Xie Y, et al. HBsAg loss in chronic hepatitis B patients with subcutaneous PD-L 1 antibody ASC22 (envafolimab) plus nucleos (T)ide analogs treatment: interim results from a phase IIb clinical trial. Hepatology, 2021, 74(6): 1392A-1392A.
[50] Tashima T. Delivery of orally administered digestible antibodies using nanoparticles. International Journal of Molecular Sciences, 2021, 22(7): 3349.
doi: 10.3390/ijms22073349
[51] Reilly R M, Domingo R, Sandhu J. Oral delivery of antibodies. Future pharmacokinetic trends. Clinical Pharmacokinetics, 1997, 32(4): 313-323.
pmid: 9113439
[52] Tong T, Wang L Y, You X R, et al. Nano and microscale delivery platforms for enhanced oral peptide/protein bioavailability. Biomaterials Science, 2020, 8(21): 5804-5823.
doi: 10.1039/d0bm01151g pmid: 33016274
[53] Hussack G, Hirama T, Ding W, et al. Engineered single-domain antibodies with high protease resistance and thermal stability. PLoS One, 2011, 6(11): e28218.
doi: 10.1371/journal.pone.0028218
[54] Crowe J S, Roberts K J, Carlton T M, et al. Preclinical development of a novel, orally-administered anti-tumour necrosis factor domain antibody for the treatment of inflammatory bowel disease. Scientific Reports, 2018, 8(1): 4941.
doi: 10.1038/s41598-018-23277-7 pmid: 29563546
[55] Crowe J S, Roberts K J, Carlton T M, et al. Oral delivery of the anti-tumor necrosis factor α domain antibody, V565, results in high intestinal and fecal concentrations with minimal systemic exposure in cynomolgus monkeys. Drug Development and Industrial Pharmacy, 2019, 45(3): 387-394.
doi: 10.1080/03639045.2018.1542708 pmid: 30395728
[56] Nurbhai S, Roberts K J, Carlton T M, et al. Oral anti-tumour necrosis factor domain antibody V565 provides high intestinal concentrations, and reduces markers of inflammation in ulcerative colitis patients. Scientific Reports, 2019, 9(1): 14042.
doi: 10.1038/s41598-019-50545-x pmid: 31575982
[57] Roberts K J, Cubitt M F, Carlton T M, et al. Preclinical development of a bispecific TNFα/IL-23 neutralising domain antibody as a novel oral treatment for inflammatory bowel disease. Scientific Reports, 2021, 11(1): 19422.
doi: 10.1038/s41598-021-97236-0 pmid: 34593832
[58] Sarker S A, Jäkel M, Sultana S, et al. Anti-rotavirus protein reduces stool output in infants with diarrhea: a randomized placebo-controlled trial. Gastroenterology, 2013, 145(4): 740-748, e8.
doi: 10.1053/j.gastro.2013.06.053 pmid: 23831050
[59] Tokuhara D, Álvarez B, Mejima M, et al. Rice-based oral antibody fragment prophylaxis and therapy against Rotavirus infection. The Journal of Clinical Investigation, 2013, 123(9): 3829-3838.
doi: 10.1172/JCI70266
[60] Pant N, Marcotte H, Hermans P, et al. Lactobacilli producing bispecific llama-derived anti-rotavirus proteins in vivo for rotavirus-induced diarrhea. Future Microbiology, 2011, 6(5): 583-593.
doi: 10.2217/fmb.11.32
[61] Chen F F, Liu Z H, Jiang F. Prospects of neutralizing nanobodies against SARS-CoV-2. Frontiers in Immunology, 2021, 12: 690742.
doi: 10.3389/fimmu.2021.690742
[62] Haga K, Takai-Todaka R, Matsumura Y, et al. Nasal delivery of single-domain antibody improves symptoms of SARS-CoV-2 infection in an animal model. PLoS Pathogens, 2021, 17(10): e1009542.
doi: 10.1371/journal.ppat.1009542
[63] Nambulli S, Xiang Y F, Tilston-Lunel N L, et al. Inhalable nanobody (PiN-21) prevents and treats SARS-CoV-2 infections in Syrian hamsters at ultra-low doses. Science Advances, 2021, 7(22): eabh0319.
doi: 10.1126/sciadv.abh0319
[64] Chi X J, Zhang X H, Pan S N, et al. An ultrapotent RBD-targeted biparatopic nanobody neutralizes broad SARS-CoV-2 variants. Signal Transduction and Targeted Therapy, 2022, 7(1): 44.
doi: 10.1038/s41392-022-00912-4 pmid: 35140196
[65] Cunningham S, Piedra P A, Martinon-Torres F, et al. Nebulised ALX-0171 for respiratory syncytial virus lower respiratory tract infection in hospitalised children: a double-blind, randomised, placebo-controlled, phase 2b trial. The Lancet Respiratory Medicine, 2021, 9(1): 21-32.
doi: 10.1016/S2213-2600(20)30320-9
[66] del Rosario J M M, Smith M, Zaki K, et al. Protection from influenza by intramuscular gene vector delivery of a broadly neutralizing nanobody does not depend on antibody dependent cellular cytotoxicity. Frontiers in Immunology, 2020, 11: 627.
doi: 10.3389/fimmu.2020.00627 pmid: 32547534
[67] Lesniak W G, Chu C Y, Jablonska A, et al. PET imaging of distinct brain uptake of a nanobody and similarly-sized PAMAM dendrimers after intra-arterial administration. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46(9): 1940-1951.
doi: 10.1007/s00259-019-04347-y pmid: 31161257
[68] Terryn S, Francart A, Lamoral S, et al. Protective effect of different anti-rabies virus VHH constructs against rabies disease in mice. PLoS One, 2014, 9(10): e109367.
doi: 10.1371/journal.pone.0109367
[69] Wu X L, Li Y L, Huang B L, et al. A single-domain antibody inhibits SFTSV and mitigates virus-induced pathogenesis in vivo. JCI Insight, 2020, 5(13): e136855.
doi: 10.1172/jci.insight.136855
[70] Fuchs H, Chen L Z, Low S, et al. Ocular and systemic pharmacokinetics of BI-X, a nanobody targeting VEGF and Ang-2, after intravitreal dosing in cynomolgus monkeys - Evidence for half-life extension by albumin. Experimental Eye Research, 2021, 205: 108486.
doi: 10.1016/j.exer.2021.108486
[71] Jakubiak P, Alvarez-Sánchez R, Fueth M, et al. Ocular pharmacokinetics of intravitreally injected protein therapeutics: comparison among standard-of-care formats. Molecular Pharmaceutics, 2021, 18(6): 2208-2217.
doi: 10.1021/acs.molpharmaceut.0c01218 pmid: 34014104
[72] Camacho-Villegas T A, Mata-González M T, García-Ubbelohd W, et al. García-Ubbelohd W, et al. Intraocular penetration of a vNAR: in vivo and in vitro VEGF165 neutralization. Marine Drugs, 2018, 16(4): 113.
doi: 10.3390/md16040113
[73] Fan J S, Zhuang X L, Yang X Y, et al. A multivalent biparatopic EGFR-targeting nanobody drug conjugate displays potent anticancer activity in solid tumor models. Signal Transduction and Targeted Therapy, 2021, 6: 320.
doi: 10.1038/s41392-021-00666-5 pmid: 34475375
[74] He X, Feng Z J, Ma J, et al. Bispecific and split CAR T cells targeting CD13 and TIM3 eradicate acute myeloid leukemia. Blood, 2020, 135(10): 713-723.
doi: 10.1182/blood.2019002779 pmid: 31951650
[75] Ebrahimizadeh W, Mousavi Gargari S, Rajabibazl M, et al. Isolation and characterization of protective anti-LPS nanobody against V. cholerae O 1 recognizing Inaba and Ogawa serotypes. Applied Microbiology and Biotechnology, 2013, 97(10): 4457-4466.
doi: 10.1007/s00253-012-4518-x pmid: 23135228
[76] Wu X L, Cheng L, Fu M, et al. A potent bispecific nanobody protects hACE 2 mice against SARS-CoV-2 infection via intranasal administration. Cell Reports, 2021, 37(3): 109869.
doi: 10.1016/j.celrep.2021.109869
[77] Lu Q Z, Zhang Z L, Li H X, et al. Development of multivalent nanobodies blocking SARS-CoV-2 infection by targeting RBD of spike protein. Journal of Nanobiotechnology, 2021, 19(1): 33.
doi: 10.1186/s12951-021-00768-w pmid: 33514385
[78] Xun G J, Song X P, Hu J, et al. Potent human single-domain antibodies specific for a novel prefusion epitope of respiratory syncytial virus F glycoprotein. Journal of Virology, 2021, 95(18): e0048521.
doi: 10.1128/JVI.00485-21
[79] McMurphy T, Xiao R, Magee D, et al. The anti-tumor activity of a neutralizing nanobody targeting leptin receptor in a mouse model of melanoma. PLoS One, 2014, 9(2): e89895.
doi: 10.1371/journal.pone.0089895
[1] 鲍奕恺,洪皓飞,施杰,周志昉,吴志猛. 靶向PSMA多价纳米抗体的制备及其生物学活性表征*[J]. 中国生物工程杂志, 2022, 42(5): 37-45.
[2] 原博,王杰文,康广博,黄鹤. 双特异性纳米抗体的研究进展及其应用 *[J]. 中国生物工程杂志, 2021, 41(2/3): 78-88.
[3] 郭广超,周于用,曹三杰,武耀民,伍锐,赵勤,文心田,黄小波,文翼平. 乙型脑炎病毒NS2A-C60A位点突变对其生物学特性影响研究*[J]. 中国生物工程杂志, 2020, 40(9): 1-10.
[4] 蔺士新,刘东晨,雷云,熊盛,谢秋玲. TNF-α纳米抗体的筛选、表达及特异性检测 *[J]. 中国生物工程杂志, 2020, 40(7): 15-21.
[5] 梅雅贤,王玥,罗文新. 纳米抗体在传染病的预防、诊断和治疗中的应用 *[J]. 中国生物工程杂志, 2020, 40(10): 24-34.
[6] 李金晶,许菲,季艳伟,舒梅,涂追,付金衡. 抗c-Myc标签纳米抗体的筛选与应用[J]. 中国生物工程杂志, 2018, 38(2): 61-67.
[7] 方媛,徐广贤,王羡,王红霞,潘俊斐. 双峰驼源天然噬菌体纳米抗体展示库的构建及抗GDH纳米抗体筛选 *[J]. 中国生物工程杂志, 2018, 38(12): 49-56.
[8] 李丹, 黄鹤. 纳米抗体异源表达的研究进展[J]. 中国生物工程杂志, 2017, 37(8): 84-95.
[9] 王佃亮. 细胞药物的种类及生物学特性——细胞药物连载之一[J]. 中国生物工程杂志, 2016, 36(5): 138-144.
[10] 李尤简, 张国奇, 郭吉星, 陈新凯, 豆晓霞, 陈创夫, 盛金良. 绵羊肌肉生长抑制素MSTN原核表达及其纳米抗体文库的构建与鉴定[J]. 中国生物工程杂志, 2014, 34(9): 87-93.
[11] 杨凡, 黄虎, 李屹晨, 邓衡露, 吴茂柏, 钟翎, 侯永敏. 新型长效重组促卵泡素的纯化和性质及药代动力学研究[J]. 中国生物工程杂志, 2014, 34(2): 45-51.
[12] 辛毅, 龚达, 习昕, 石洪涛, 刘飒, 许秀芳, 李娜, 黄益民. 酶联合消化法和贴块法分离小鼠肺动脉平滑肌细胞及其生物学特性的研究[J]. 中国生物工程杂志, 2013, 33(9): 10-16.
[13] 赵玉娇, 潘玥, 阎玲梅, 岳耀斐, 杨丽娟, 孙强明. Ⅱ型登革病毒D01090株在人胚肺二倍体细胞KMB17上适应株选育及初步鉴定[J]. 中国生物工程杂志, 2012, 32(11): 1-7.
[14] 赵玉娇, 潘玥, 阎玲梅, 岳耀斐, 杨丽娟, 孙强明. Ⅱ型登革病毒D01090株在人胚肺二倍体细胞KMB17上适应株选育及初步鉴定[J]. 中国生物工程杂志, 2012, 32(11): 1-7.
[15] 涂追, 许杨, 刘夏, 何庆华, 陶勇. 驼源天然单域重链抗体库的构建与鉴定[J]. 中国生物工程杂志, 2011, 31(04): 31-36.