Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (11): 99-108    DOI: 10.13523/j.cb.2209009
生物质资源     
麦冬提取物治疗2型糖尿病小鼠的血清代谢组学研究*
张杰1,2,林炳锋2,许平翠2,王娜妮2,陈郁1,**()
1 杭州职业技术学院 杭州 310018
2 浙江省中医药研究院 杭州 310007
Serum Metabolomics of Ophiopogon japonicus Extract Against Type 2 Diabetes in Mice
ZHANG Jie1,2, LIN Bing-feng2, XU Ping-cui2, WANG Na-ni2, CHEN Yu1,**()
1 Hangzhou Vocational & Technical College, Hangzhou 310018, China
2 Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China
 全文: PDF(1501 KB)   HTML
摘要:

目的:采用代谢组学方法研究麦冬对2型糖尿病(T2DM)小鼠内源性代谢物的影响。方法: 腹腔注射链脲佐菌素建立T2DM小鼠模型。连续4周灌胃给予麦冬水提物后,检测血清中糖尿病相关指标,且以超高效液相色谱-飞行时间质谱联用(UPLC-Q/TOF-MS)技术,研究麦冬对T2DM小鼠血清中代谢物质的影响,分析相关代谢通路。结果: 与正常对照组相比,模型组血清的空腹葡萄糖、总胆固醇、甘油三酯、低密度脂蛋白胆固醇含量显著升高,高密度脂蛋白胆固醇含量显著降低;灌胃给予麦冬水提物后,T2DM小鼠血清中以上指标均明显改善。代谢组学结果显示,正常组与模型组共有43个差异代谢物,富集于18条通路;麦冬提取物明显降低T2DM小鼠的甘油酸、丙二酸半醛和4-羟基苯基丙酮酸含量,差异代谢物富集于泛醌和其他萜类醌生物合成代谢等7条通路。结论: 麦冬水提物具有降低T2DM小鼠血糖和血脂的药效作用,且可能与泛醌和其他萜类醌生物合成等通路有关。

关键词: 代谢组学2型糖尿病麦冬血清超高效液相色谱-飞行时间质谱联用技术    
Abstract:

Objective: To study the protective mechanism of Ophiopogon japonicus extract on Type 2 diabetes mellitus (T2DM) based on metabolomics. Methods: The T2DM mouse model was established by intraperitoneal injection of streptozotocin. Mice were orally administrated with the aqueous extract of Ophiopogon japonicu for 4 weeks. The diabetic phenotypes in serum were measured. Changes in serum metabolites were determined by ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS). Results: Compared with the control group, the fasting glucose, total cholesterol, triglyceride, and low-density lipoprotein cholesterol were increased in the model group, while the high-density lipoprotein cholesterol decreased significantly, and the above indexes were reversed after treatment of Ophiopogon japonicus extract. The metabonomic results showed that 43 differential metabolites were found between the control group and the model group. These metabolites were enriched in 18 pathways. Ophiopogon japonicus extract significantly decreased the content of glyceric acid, malonic semialdehyde, and 4-hydroxyphenylpyruvic acid in T2DM mice. Ophiopogon japonicus extract could regulate 7 pathways, such as ubiquinone and other terpenoid-quinone biosynthesis. Conclusion: The hypoglycemic and lipid-lowering effect of Ophiopogon on T2DM may be related to ubiquinone and other terpenoid-quinone biosynthesis.

Key words: Metabonomics    Type 2 diabetes    Ophiopogon japonicas    Serum    UPLC-Q/TOF-MS
收稿日期: 2022-09-03 出版日期: 2022-12-07
ZTFLH:  Q819  
基金资助: *国家自然科学基金(81973447);杭州市农业与社会发展科研项目(20201203B130)
通讯作者: **电子信箱:1181411591@qq.com   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张杰
林炳锋
许平翠
王娜妮
陈郁

引用本文:

张杰, 林炳锋, 许平翠, 王娜妮, 陈郁. 麦冬提取物治疗2型糖尿病小鼠的血清代谢组学研究*[J]. 中国生物工程杂志, 2022, 42(11): 99-108.

ZHANG Jie, LIN Bing-feng, XU Ping-cui, WANG Na-ni, CHEN Yu. Serum Metabolomics of Ophiopogon japonicus Extract Against Type 2 Diabetes in Mice. China Biotechnology, 2022, 42(11): 99-108.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2209009        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I11/99

图1  麦冬对T2DM模型小鼠血清中FBG、TC、TG、LDL-C和HDL-C水平的影响
图2  PCA 3D得分图
图3  PLS-DA得分图
图4  OPLS-DA得分图和Permutation验证图
编号 HMDB号 代谢物 质荷比
(m/z)
保留时间
/min
分子式 加合物 正常组
vs.模
型组
模型组
vs.麦
冬组
1 HMDB0000700 Hydroxypropionic acid 71.013 8 0.06 C3H6O3 M-H2O-H **
2 HMDB0011111 Malonic semialdehyde 87.008 7 9.58 C3H4O3 M-H * *
3 HMDB0000139 Glyceric acid 87.008 7 8.01 C3H6O4 M-H2O-H * *
4 HMDB0000630 Cytosine 92.025 3 19.84 C4H5N3O M-H2O-H **
5 HMDB0000718 Isovaleric acid 101.060 7 12.14 C5H10O2 M-H **
6 HMDB0000019 Alpha-ketoisovaleric acid 115.040 0 0.06 C5H8O3 M-H **
7 HMDB0000227 Mevalonic acid 129.055 7 5.34 C6H12O4 M-H2O-H **
8 HMDB0001644 D-Xylulose 131.034 9 3.09 C5H10O5 M-H2O-H **
9 HMDB0006483 D-Aspartic acid 132.030 1 0.05 C4H7NO4 M-H **
10 HMDB0000157 Hypoxanthine 135.031 3 10.56 C5H4N4O M-H **
11 HMDB0000635 Succinylacetone 139.040 0 9.60 C7H10O4 M-H2O-H **
12 HMDB0000819 Normetanephrine 164.071 7 7.63 C9H13NO3 M-H2O-H *
13 HMDB0014634 Miglitol 188.092 7 1.88 C8H17NO5 M-H2O-H **
14 HMDB0000291 Vanillylmandelic acid 197.045 4 9.84 C9H10O5 M-H *
15 HMDB0006059 20-Carboxy-leukotriene B4 347.186 1 9.38 C20H28O5 M-H20-H *
16 HMDB0012136 1-Amino-propan-2-ol 76.076 3 0.92 C3H9NO M+H *
17 HMDB0000097 Choline 86.096 9 1.10 C5H14NO M+H-H2O **
18 HMDB0033827 (2E)-2-Heptenal 95.085 9 0.60 C7H12O M+H-H2O **
19 HMDB0002362 2,4-Diaminobutyric acid 101.071 2 14.00 C4H10N2O2 M+H-H2O *
20 HMDB0000459 3-Methylcrotonylglycine 140.070 4 10.70 C7H11NO3 M+H-H2O **
21 HMDB0000182 L-Lysine 147.112 6 10.59 C6H14N2O2 M+H *
22 HMDB0000205 Phenylpyruvic acid 165.054 3 0.11 C9H8O3 M+H *
23 HMDB0000159 L-Phenylalanine 166.086 1 2.91 C9H11NO2 M+H **
24 HMDB0001431 Pyridoxamine 169.096 9 1.09 C8H12N2O2 M+H **
25 HMDB0000446 N-alpha-acetyl-L-lysine 171.112 5 1.08 C8H16N2O3 M+H-H2O **
26 HMDB0000701 Hexanoylglycine 174.112 3 8.11 C8H15NO3 M+H **
27 HMDB0014018 4-Hydroxypropofol 177.127 1 15.79 C12H18O2 M+H-H2O ** *
28 HMDB0000707 4-Hydroxyphenylpyruvic acid 181.049 2 15.68 C9H8O4 M+H ** *
29 HMDB0000158 L-Tyrosine 182.080 8 7.09 C9H11NO3 M+H **
30 HMDB0001024 Phosphohydroxypyruvic acid 184.985 1 16.48 C3H5O7P M+H **
31 HMDB0002302 Indole-3-propionic acid 190.085 9 9.60 C11H11NO2 M+H **
32 HMDB0012948 Formyl-5-hydroxykynurenamine 191.080 9 1.11 C10H12N2O3 M+H-H2O **
33 HMDB0000350 3-Hydroxysebacic acid 201.111 8 10.70 C10H18O5 M+H-H2O **
34 HMDB0013286 N-Undecanoylglycine 213.982 5 19.80 C13H25NO3 M+H-H2O ** *
35 HMDB0011175 Leucylproline 229.154 1 1.08 C11H20N2O3 M+H **
36 HMDB0011170 Gamma-glutamylisoleucine 261.143 9 6.61 C11H20N2O5 M+H ** *
37 HMDB0013133 Methylmalonylcarnitine 262.127 9 1.06 C11H19NO6 M+H *
38 HMDB0004701 9,10-Epoxyoctadecenoic acid 279.230 9 14.57 C18H32O3 M+H-H2O **
39 HMDB0000252 Sphingosine 282.278 5 16.11 C18H37NO2 M+H-H2O *
40 HMDB0001388 Alpha-linolenic acid 301.215 0 13.39 C18H30O2 M+H *
41 HMDB0001043 Arachidonic acid 305.246 6 14.28 C20H32O2 M+H ** *
42 HMDB0000222 Palmitoylcarnitine 400.341 6 17.35 C23H45NO4 M+H **
43 HMDB0011760 Cer(d18:0/16:0) 540.534 1 16.33 C34H69NO3 M+H **
44 HMDB0010392 LysoPC[20:2(11Z,14Z)/0:0] 548.369 9 14.45 C28H56NO7P M+H ** ↓。*
表1  麦冬治疗T2DM潜在生物标志物
图5  空白组与模型组的差异代谢物通路图(a)和麦冬组与模型组的差异物代谢通路图(b)
[1] Galicia-Garcia U, Benito-Vicente A, Jebari S, et al. Pathophysiology of type 2 diabetes mellitus. International Journal of Molecular Sciences, 2020, 21(17): 6275.
doi: 10.3390/ijms21176275
[2] Zheng Y, Ley S H, Hu F B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nature Reviews Endocrinology, 2018, 14(2): 88-98.
doi: 10.1038/nrendo.2017.151 pmid: 29219149
[3] Philippe J, Raccah D. Treating type 2 diabetes: how safe are current therapeutic agents? International Journal of Clinical Practice, 2009, 63(2): 321-332.
doi: 10.1111/j.1742-1241.2008.01980.x pmid: 19196370
[4] 李晶, 苏薇薇, 王永刚, 等. 麦冬提取物对实验性2型糖尿病大鼠的保护作用. 中山大学学报(自然科学版), 2017, 56(3): 119-124.
Li J, Su W W, Wang Y G, et al. Protective effects of Ophiopogonis japonicas extract on experimental type 2 diabetic rats. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2017, 56(3): 119-124.
[5] He Q, Zhang T Q, Jin B, et al. Exploring the regulatory mechanism of modified Huanglian Maidong Decoction on type 2 diabetes mellitus biological network based on systematic pharmacology. Evidence-Based Complementary and Alternative Medicine, 2021, 2021: 1768720.
[6] 彭婉, 马骁, 王建, 等. 麦冬化学成分及药理作用研究进展. 中草药, 2018, 49(2): 477-488.
Peng W, Ma X, Wang J, et al. Research progress on chemical constituents and pharmacological effects of Ophiopogon japonicas. Chinese Traditional and Herbal Drugs, 2018, 49(2): 477-488.
[7] Zhu Y Y, Cong W J, Shen L, et al. Fecal metabonomic study of a polysaccharide, MDG-1 from Ophiopogon japonicus on diabetic mice based on gas chromatography/time-of-flight mass spectrometry (GC TOF/MS). Molecular BioSystems, 2014, 10(2): 304-312.
doi: 10.1039/C3MB70392D
[8] Li Y, Zhu Y Y, Shi L L, et al. UPLC-TOF/MS based urinary metabonomic studies reveal mild prevention effects of MDG-1 on metabolic disorders in diet-induced obese mice. Analytical Methods, 2014, 6(12): 4171.
doi: 10.1039/c4ay00796d
[9] Zhou Y, Men L H, Pi Z F, et al. Fecal metabolomics of type 2 diabetic rats and treatment with Gardenia jasminoides Ellis based on mass spectrometry technique. Journal of Agricultural and Food Chemistry, 2018, 66(6): 1591-1599.
doi: 10.1021/acs.jafc.7b06082
[10] 费烨, 李红梅, 孙浩, 等. 苦荞清蛋白酶解物对2型糖尿病小鼠血糖血脂的作用. 食品科技, 2020, 45(5): 52-57.
Fei Y, Li H M, Sun H, et al. Effects of Tartary buckwheat albumin hydrolysate on blood glucose and blood lipid in type 2 diabetic mice. Food Science and Technology, 2020, 45(5): 52-57.
[11] Guo W J, Ouyang H, Liu M, et al. Based on plasma metabonomics and network pharmacology exploring the therapeutic mechanism of Gynura procumbens on type 2 diabetes. Frontiers in Pharmacology, 2021, 12: 674379.
doi: 10.3389/fphar.2021.674379
[12] Xu M, Wu R X, Liang Y, et al. Protective effect and mechanism of Qishiwei Zhenzhu pills on cerebral ischemia-reperfusion injury via blood-brain barrier and metabonomics. Biomedicine & Pharmacotherapy, 2020, 131: 110723.
doi: 10.1016/j.biopha.2020.110723
[13] Xie H, Hua Z Y, Guo M Y, et al. Gut microbiota and metabonomics used to explore the mechanism of Qing’e Pills in alleviating osteoporosis. Pharmaceutical Biology, 2022, 60(1): 785-800.
doi: 10.1080/13880209.2022.2056208
[14] Crane F L. Biochemical functions of coenzyme Q10. Journal of the American College of Nutrition, 2001, 20(6): 591-598.
pmid: 11771674
[15] Gutierrez-Mariscal F M, Yubero-Serrano E M, Villalba J M, et al. Coenzyme Q10: from bench to clinic in aging diseases, a translational review. Critical Reviews in Food Science and Nutrition, 2019, 59(14): 2240-2257.
doi: 10.1080/10408398.2018.1442316 pmid: 29451807
[16] Garrido-Maraver J, Cordero M D, Oropesa-Avila M, et al. Clinical applications of coenzyme Q10. Frontiers in Bioscience (Landmark Edition), 2014, 19(4): 619-633.
[17] Hernández-Camacho J D, Bernier M, López-Lluch G, et al. Coenzyme Q10 supplementation in aging and disease. Frontiers in Physiology, 2018, 9: 44.
doi: 10.3389/fphys.2018.00044 pmid: 29459830
[18] Kucharská J, Braunová Z, Ulicná O, et al. Deficit of coenzyme Q in heart and liver mitochondria of rats with streptozotocin-induced diabetes. Physiological Research, 2000, 49(4): 411-418.
pmid: 11072800
[19] Sena C M, Nunes E, Gomes A, et al. Supplementation of coenzyme Q10 and α-tocopherol lowers glycated hemoglobin level and lipid peroxidation in pancreas of diabetic rats. Nutrition Research, 2008, 28(2): 113-121.
doi: 10.1016/j.nutres.2007.12.005
[20] Devadasu V R, Wadsworth R M, Kumar M N V R. Protective effects of nanoparticulate coenzyme Q10 and curcumin on inflammatory markers and lipid metabolism in streptozotocin-induced diabetic rats: a possible remedy to diabetic complications. Drug Delivery and Translational Research, 2011, 1(6): 448-455.
doi: 10.1007/s13346-011-0041-3 pmid: 25786365
[21] 王玉英, 戚欣, 李静. 磷酸甘油酸激酶1与肿瘤. 药学学报, 2019, 54(6): 978-983.
Wang Y Y, Qi X, Li J. Phosphoglycerate kinase 1 and cancer. Acta Pharmaceutica Sinica, 2019, 54(6): 978-983.
[22] Zhao J Y, Feng K R, Wang F, et al. A retrospective overview of PHGDH and its inhibitors for regulating cancer metabolism. European Journal of Medicinal Chemistry, 2021, 217: 113379.
doi: 10.1016/j.ejmech.2021.113379
[23] 何流琴, 金顺顺, 周锡红, 等. 丝氨酸对动物机体健康的影响研究进展. 动物营养学报, 2020, 32(10): 4480-4490.
He L Q, Jin S S, Zhou X H, et al. Research progress on effects of serine on animal health. Chinese Journal of Animal Nutrition, 2020, 32(10): 4480-4490.
[24] Zeng M M, Liang Y Z, Li H D, et al. Plasma metabolic fingerprinting of childhood obesity by GC/MS in conjunction with multivariate statistical analysis. Journal of Pharmaceutical and Biomedical Analysis, 2010, 52(2): 265-272.
doi: 10.1016/j.jpba.2010.01.002 pmid: 20092977
[25] 宁萌, 李田乐, 段大为, 等. 2型糖尿病早期大鼠血清代谢组学分析. 生物医学工程与临床, 2016, 20(2): 131-135.
Ning M, Li T L, Duan D W, et al. Metabolomics study of rat serum of early stage type 2 diabetic model. Biomedical Engineering and Clinical Medicine, 2016, 20(2): 131-135.
[1] 甘巧, 孟庆雄. 肠道菌群及其代谢产物与T2DM发病机制及干预措施*[J]. 中国生物工程杂志, 2022, 42(3): 62-71.
[2] 陈庆宇,王鲜忠,张姣姣. 基因技术在治疗2型糖尿病中的应用*[J]. 中国生物工程杂志, 2020, 40(11): 73-81.
[3] 冯琳晶,于洋,杜红伟. FoxO1在胰岛β细胞代谢灵活性受损及失代偿进程中的作用 *[J]. 中国生物工程杂志, 2018, 38(6): 70-76.
[4] 王得华, 马义, 韩磊, 肖兴, 李艳伟, 党诗莹, 范志勇, 文涛, 洪岸. 新型基因重组PACAP衍生物MPL-2的制备及其抗2型糖尿病作用研究[J]. 中国生物工程杂志, 2017, 37(5): 59-65.
[5] 刘立平, 张纯, 殷爽, 王祺, 张耀, 余蓉, 刘永东, 苏志国. 白蛋白结合肽-多柔比星耦合物的设计、制备、表征及初步评价[J]. 中国生物工程杂志, 2017, 37(4): 68-75.
[6] 翟兵兵, 马倩, 丁明珠, 元英进. 谷胱甘肽对VC一步发酵作用的研究[J]. 中国生物工程杂志, 2016, 36(8): 38-45.
[7] 李成媛, 张晶晶, 钱凯, 缪亚娜, 蔡燕飞, 杨剑峰, 何杨, 金坚. 人血清白蛋白-干扰素α2b融合蛋白在CHO细胞中的表达[J]. 中国生物工程杂志, 2016, 36(7): 7-14.
[8] 钟成, 刘伶普, 李清亮, 杨攀飞, 郝俊光, 贾士儒. 采用代谢组学分析技术分析工业啤酒发酵过程中风味物质生成规律[J]. 中国生物工程杂志, 2016, 36(12): 49-58.
[9] 马义, 赵绍军, 洪岸. 新型人血清白蛋白特异结合肽ML的筛选及鉴定[J]. 中国生物工程杂志, 2015, 35(5): 74-80.
[10] 曹锡梅, 罗旭光, 梁俊红, 张潮, 白丽娟, 郭大玮. 利用ChIP技术研究SAF基因编码区组蛋白修饰变化[J]. 中国生物工程杂志, 2015, 35(3): 8-17.
[11] 韦东, 吾鲁木汗·那孜尔别克, 段世雄, 严芳, 恩特马克·布拉提白. 禽多杀性巴氏杆菌C48-3株外膜蛋白H的致病作用[J]. 中国生物工程杂志, 2014, 34(06): 31-39.
[12] 刘英富, 霍景瑞, 范国才, 孙志贤, 王清明. 一种蛋白质B细胞表位展示系统的构建及验证[J]. 中国生物工程杂志, 2012, 32(6): 64-68.
[13] 孙彩霞, 汪莹, 吴晓菲, 陈利军, 武志杰. 转基因抗虫棉棉籽组分的代谢组学研究[J]. 中国生物工程杂志, 2012, 32(11): 35-41.
[14] 孙彩霞, 汪莹, 吴晓菲, 陈利军, 武志杰. 转基因抗虫棉棉籽组分的代谢组学研究[J]. 中国生物工程杂志, 2012, 32(11): 35-41.
[15] 龚迪, 易小萍, 张元兴. MDCK细胞微载体悬浮培养放大工艺研究[J]. 中国生物工程杂志, 2012, 32(09): 55-60.