Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (8): 30-39    DOI: 10.13523/j.cb.2204070
研究报告     
利用海洋微拟球藻生产蜂王浆主效成分24-亚甲基胆固醇的研究*
邓湘子,周文序,路延笃**()
海南大学海洋学院 南海海洋资源利用国家重点实验室 海口 570228
Production of 24- Methylenecholesterol from Royal Jelly by Nannocloropsis oceanica IMET1
DENG Xiang-zi,ZHOU Wen-xu,LU Yan-du**()
State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou 570228, China
 全文: PDF(3527 KB)   HTML
摘要:

用于生产生物燃料的微藻生物技术正处于十字路口,但仍在不断发展。微藻衍生的多产品技术的发展将大大提高经济可行性,特别是结合生产高附加值化合物。研究结果表明敲除海洋微拟球藻中的DWARF1 (DWF1)基因的突变株具有比野生型更高的色素含量和光合效率,并且还可以显著降低胆固醇积累(这可能是人类心血管疾病的主要危险因素),使其从原本占总甾醇 (TSs) 超过70%的含量减少至零。相比之下,其前体24-亚甲基胆固醇(一种对人类健康有益的蜂王浆的关键微量营养素)的产量则从零增加到60%以上。结合海洋微拟球藻中ω-3脂肪酸含量高的特点,我们预计在工业规模上开发该菌株将带来可观的利润。

关键词: 微拟球藻DWARF1基因胆固醇24-亚甲基胆固醇植物甾醇蜜蜂人工饲料蜂王浆    
Abstract:

Microalgal biotechnology for biofuels is at a crossroads and its development is still in flux. The development of microalga-derived multi-product technology will greatly improve the economic viability, particularly with a combination of the production of high value-added compounds. The results showed that the mutants with DWARF1 (DWF1) gene knocked out had higher pigment content and photosynthetic efficiency than the wild type, and could also significantly reduce the accumulation of cholesterol (which might act as a leading risk factor for human cardiovascular disease) from over 70% of total sterols (TSs) to null. In contrast, the production of its precursor 24-methylenecholesterol (a critical micronutrient of royal jelly that is beneficial to human health) was increased from null to more than 60% of TSs. Combined with the high content of omega-3 fatty acids of N. oceanica, we anticipate an appreciable profit by exploiting this strain on an industrial scale.

Key words: Nannocloropsis oceanica    DWARF1 gene    Cholesterol    24-Methylenecholesterol    Phytosterols    Honeybee artificial food    Royal jelly
收稿日期: 2022-04-27 出版日期: 2022-09-07
ZTFLH:  Q819  
基金资助: * 国家重点研发计划合成生物学重点专项(2021YFA0909600);国家重点研发计划政府间合作重点专项(2021YFE0110100);国家自然科学基金(3120006);海南省研究生创新科研项目(QHYS2021-209)
通讯作者: 路延笃     E-mail: ydlu@hainanu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
邓湘子
周文序
路延笃

引用本文:

邓湘子, 周文序, 路延笃. 利用海洋微拟球藻生产蜂王浆主效成分24-亚甲基胆固醇的研究*[J]. 中国生物工程杂志, 2022, 42(8): 30-39.

DENG Xiang-zi, ZHOU Wen-xu, LU Yan-du. Production of 24- Methylenecholesterol from Royal Jelly by Nannocloropsis oceanica IMET1. China Biotechnology, 2022, 42(8): 30-39.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2204070        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I8/30

图1  dwf1突变株基因组DNA的PCR扩增
图2  正常培养条件下dwf1突变株和野生型的生长表现
Sterols kinds RT/min Sterol profile/%
dwf1-1 dwf1-7 WT
Cholesterol 14.34 1.02±0.03* 1.21±0.09* 73.87±1.01
Desmosterol 15.09 17.49±0.90* 15.43±1.09* 0.00±0.00
24-Methylenecholesterol 16.39 62.15±2.26* 66.63±1.45* 0.00±0.00
Clerosterol 18.13 1.02±0.13 0.78±0.03* 1.17±0.06
Isofucosterol 18.59 8.79±0.67* 7.62±0.17* 10.75±0.29
Fucosterol 18.99 9.53±0.53* 8.32±0.25* 14.22±0.69
Total sterol/(μg/mg DW) 4.08±0.55 5.69±0.53* 4.43±0.19
表1  正常培养条件下野生型和dwf1突变株的GC-MS 甾醇数据分析
图S1  野生型微拟球藻的基因组序列
图S2  dwf1-1突变株的基因组序列
图S3  dwf1-7突变株的基因组序列
图S4  微拟球藻中的主要甾醇
[1] Rodolfi L, Chini Zittelli G, Bassi N, et al. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 2009, 102(1): 100-112.
doi: 10.1002/bit.22033
[2] Chen C Y, Chen Y C, Huang H C, et al. Engineering strategies for enhancing the production of eicosapentaenoic acid (EPA) from an isolated microalga Nannochloropsis oceanica CY2. Bioresource Technology, 2013, 147: 160-167.
doi: 10.1016/j.biortech.2013.08.051
[3] Llaverias G, Escolà-Gil J C, Lerma E, et al. Phytosterols inhibit the tumor growth and lipoprotein oxidizability induced by a high-fat diet in mice with inherited breast cancer. The Journal of Nutritional Biochemistry, 2013, 24(1): 39-48.
doi: 10.1016/j.jnutbio.2012.01.007
[4] Escurriol V, Cofán M, Moreno-Iribas C, et al. Phytosterol plasma concentrations and coronary heart disease in the prospective Spanish EPIC cohort. Journal of Lipid Research, 2010, 51(3): 618-624.
doi: 10.1194/jlr.P000471 pmid: 19786566
[5] Demonty I, Ras R T, van der Knaap H C M, et al. The effect of plant sterols on serum triglyceride concentrations is dependent on baseline concentrations: a pooled analysis of 12 randomised controlled trials. European Journal of Nutrition, 2013, 52(1): 153-160.
doi: 10.1007/s00394-011-0297-x
[6] Lye C T, Mukherjee S, Burns S F. Combining plant sterols with walking lowers postprandial triacylglycerol more than walking only in Chinese men with elevated body mass index. International Journal of Sport Nutrition and Exercise Metabolism, 2019, 29(6): 576-582.
doi: 10.1123/ijsnem.2018-0398
[7] Trautwein E A, Koppenol W P, de Jong A, et al. Plant sterols lower LDL-cholesterol and triglycerides in dyslipidemic individuals with or at risk of developing type 2 diabetes; a randomized, double-blind, placebo-controlled study. Nutrition & Diabetes, 2018, 8(1): 30.
[8] 郭盼盼, 韩婷. 植物甾醇与心血管疾病关系的研究进展. 中国食物与营养, 2021, 27(9): 5-8.
Guo P P, Han T. Research advancement on the relationship between phytosterol and cardiovascular disease. Food and Nutrition in China, 2021, 27(9): 5-8.
[9] Moll P P, Sing C F, Weidman W H, et al. Total cholesterol and lipoproteins in school children: prediction of coronary heart disease in adult relatives. Circulation, 1983, 67(1): 127-134.
pmid: 6847791
[10] McGill H C Jr, McMahan C A, Gidding S S. Preventing heart disease in the 21st century: implications of the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study. Circulation, 2008, 117(9): 1216-1227.
doi: 10.1161/CIRCULATIONAHA.107.717033 pmid: 18316498
[11] Wu Q Q, Wang Q T, Fu J F, et al. Polysaccharides derived from natural sources regulate triglyceride and cholesterol metabolism: a review of the mechanisms. Food & Function, 2019, 10(5): 2330-2339.
[12] le Goff M, le Ferrec E, Mayer C, et al. Microalgal carotenoids and phytosterols regulate biochemical mechanisms involved in human health and disease prevention. Biochimie, 2019, 167: 106-118.
doi: 10.1016/j.biochi.2019.09.012
[13] Lu Y D, Zhou W X, Wei L, et al. Regulation of the cholesterol biosynthetic pathway and its integration with fatty acid biosynthesis in the oleaginous microalga Nannochloropsis oceanica. Biotechnology for Biofuels, 2014, 7: 81.
doi: 10.1186/1754-6834-7-81
[14] Pain J, Barbier M, Bogdanovsky D, et al. Chemistry and biological activity of the secretions of queen and worker honeybees (Apis mellifica L.). Comparative Biochemistry and Physiology, 1962, 6(3): 233-241.
doi: 10.1016/0010-406X(62)90081-6
[15] Brown W H, Felauer E E, Freure R J. Some new components of royal jelly. Canadian Journal of Chemistry, 1961, 39(5): 1086-1089.
doi: 10.1139/v61-134
[16] Herbert E W Jr, Svoboda J A, Thompson M J, et al. Sterol utilization in honey bees fed a synthetic diet: effects on brood rearing. Journal of Insect Physiology, 1980, 26(5): 287-289.
doi: 10.1016/0022-1910(80)90135-3
[17] Chakrabarti P, Lucas H M, Sagili R R. Evaluating effects of a critical micronutrient (24-methylenecholesterol) on honey bee physiology. Annals of the Entomological Society of America, 2019, 113(3): 176-182.
doi: 10.1093/aesa/saz067
[18] Sugiyama T, Takahashi K, Tokoro S, et al. Inhibitory effect of 10-hydroxy-trans-2-decenoic acid on LPS-induced IL-6 production via reducing IκB-ζ expression. Innate Immunity, 2012, 18(3): 429-437.
doi: 10.1177/1753425911416022
[19] Park M J, Kim B Y, Park H G, et al. Major royal jelly protein 2 acts as an antimicrobial agent and antioxidant in royal jelly. Journal of Asia-Pacific Entomology, 2019, 22(3): 684-689.
doi: 10.1016/j.aspen.2019.05.003
[20] Jiang C M, Liu X, Li C X, et al. Anti-senescence effect and molecular mechanism of the major royal jelly proteins on human embryonic lung fibroblast (HFL-I) cell line. Journal of Zhejiang University Science B, 2018, 19(12): 960-972.
doi: 10.1631/jzus.B1800257
[21] Pan Y M, Rong Y L, You M M, et al. Royal jelly causes hypotension and vasodilation induced by increasing nitric oxide production. Food Science & Nutrition, 2019, 7(4): 1361-1370.
[22] Guardia de Souza e Silva T, do Val de Paulo M E F, da Silva J R M, et al. Oral treatment with royal jelly improves memory and presents neuroprotective effects on icv-STZ rat model of sporadic Alzheimer’s disease. Heliyon, 2020, 6(2): e03281.
doi: 10.1016/j.heliyon.2020.e03281
[23] Bincoletto C, Eberlin S, Figueiredo C A V, et al. Effects produced by Royal Jelly on haematopoiesis: relation with host resistance against Ehrlich ascites tumour challenge. International Immunopharmacology, 2005, 5(4): 679-688.
doi: 10.1016/j.intimp.2004.11.015 pmid: 15710337
[24] Lu Y D, Tarkowská D, Turečková V, et al. Antagonistic roles of abscisic acid and cytokinin during response to nitrogen depletion in oleaginous microalga Nannochloropsis oceanica expand the evolutionary breadth of phytohormone function. The Plant Journal, 2014, 80(1): 52-68.
doi: 10.1111/tpj.12615
[25] Poliner E, Takeuchi T, Du Z Y, et al. Nontransgenic marker-free gene disruption by an episomal CRISPR system in the oleaginous microalga, Nannochloropsis oceanica CCMP1779. ACS Synthetic Biology, 2018, 7(4): 962-968.
doi: 10.1021/acssynbio.7b00362 pmid: 29518315
[26] Lu Y D, Gan Q H, Iwai M, et al. Role of an ancient light-harvesting protein of PSI in light absorption and photoprotection. Nature Communications, 2021, 12: 679.
doi: 10.1038/s41467-021-20967-1
[27] Wang Q T, Lu Y D, Xin Y, et al. Genome editing of model oleaginous microalgae Nannochloropsis spp. by CRISPR/Cas9. The Plant Journal, 2016, 88(6): 1071-1081.
doi: 10.1111/tpj.13307
[28] Zhou W X, Branch W D, Gilliam L, et al. Phytosterol composition of Arachis hypogaea seeds from different maturity classes. Molecules (Basel, Switzerland), 2018, 24(1): 106.
doi: 10.3390/molecules24010106
[29] Zhou W X, Cross G A M, Nes W D. Cholesterol import fails to prevent catalyst-based inhibition of ergosterol synthesis and cell proliferation of Trypanosoma brucei. Journal of Lipid Research, 2007, 48(3): 665-673.
doi: 10.1194/jlr.M600404-JLR200
[30] Takahashi T, Gasch A, Nishizawa N, et al. The DIMINUTO gene of Arabidopsis is involved in regulating cell elongation. Genes & Development, 1995, 9(1): 97-107.
doi: 10.1101/gad.9.1.97
[31] Klahre U, Noguchi T, Fujioka S, et al. The Arabidopsis DIMINUTO/DWARF1 gene encodes a protein involved in steroid synthesis. The Plant Cell, 1998, 10(10): 1677-1690.
doi: 10.1105/tpc.10.10.1677
[32] Choe S, Dilkes B P, Gregory B D, et al. The Arabidopsis dwarf 1 mutant is defective in the conversion of 24-methylenecholesterol to campesterol in brassinosteroid biosynthesis. Plant Physiology, 1999, 119(3): 897-908.
pmid: 10069828
[33] Tsukagoshi Y, Suzuki H, Seki H, et al. Ajuga Δ24-sterol reductase catalyzes the direct reductive conversion of 24-methylenecholesterol to campesterol. The Journal of Biological Chemistry, 2016, 291(15): 8189-8198.
doi: 10.1074/jbc.M115.703470
[34] Youn J H, Kim T W, Joo S H, et al. Function and molecular regulation of DWARF 1 as a C-24 reductase in brassinosteroid biosynthesis in Arabidopsis. Journal of Experimental Botany, 2018, 69(8): 1873-1886.
doi: 10.1093/jxb/ery038
[35] Du L Q, Poovaiah B W. Ca2+/calmodulin is critical for brassinosteroid biosynthesis and plant growth. Nature, 2005, 437(7059): 741-745.
doi: 10.1038/nature03973
[36] Ajjawi I, Verruto J, Aqui M, et al. Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator. Nature Biotechnology, 2017, 35(7): 647-652.
doi: 10.1038/nbt.3865 pmid: 28628130
[37] Kang N K, Kim E K, Kim Y U, et al. Increased lipid production by heterologous expression of AtWRI 1 transcription factor in Nannochloropsis salina. Biotechnology for Biofuels, 2017, 10: 231.
doi: 10.1186/s13068-017-0919-5 pmid: 29046718
[38] Han X, Song X J, Li F L, et al. Improving lipid productivity by engineering a control-knob gene in the oleaginous microalga Nannochloropsis oceanica. Metabolic Engineering Communications, 2020, 11: e00142.
doi: 10.1016/j.mec.2020.e00142
[39] Yang F, Yuan W, Ma Y H, et al. Harnessing the lipogenic potential of Δ6-desaturase for simultaneous hyperaccumulation of lipids and polyunsaturated fatty acids in Nannochloropsis oceanica. Frontiers in Marine Science, 2019, 6: 682.
doi: 10.3389/fmars.2019.00682
[1] 郭倩倩,高登科,程晓涛,路福平,田之仓优,秦慧民. 胆固醇氧化酶PsCO4异源表达、纯化及酶学性质分析 *[J]. 中国生物工程杂志, 2018, 38(6): 34-42.
[2] 张玉富, 王建文, 李松涛, 朱张亮, 路福平, 毛淑红, 秦慧民. 来源于红球菌胆固醇氧化酶ChOG的异源表达、纯化及催化反应结构分析[J]. 中国生物工程杂志, 2017, 37(6): 43-49.
[3] 张璟, 张文强, 秦慧民, 毛淑红, 薛家禄, 路福平. 胆固醇7,8位脱氢酶的表达及催化活性研究[J]. 中国生物工程杂志, 2017, 37(1): 21-26.
[4] 张文倩, 周晓, 肖文海, 王颖. 人工酵母后鲨烯路径基因对7-脱氢胆固醇合成的影响[J]. 中国生物工程杂志, 2016, 36(6): 39-50.
[5] 张璟, 张玉富, 秦慧民, 毛淑红, 路福平. 一株高效氧化胆固醇的简单节杆菌构建与转化条件优化[J]. 中国生物工程杂志, 2016, 36(11): 70-75.
[6] 孟迎迎, 王海涛, 曹旭鹏, 薛松, 杨青, 王伟良. HPLC-ELSD快速测定微藻中性脂[J]. 中国生物工程杂志, 2015, 35(11): 61-69.
[7] 蔡怀涵 王璐 谢元翼 刘旭东 宋青. 细胞核受体LXRβ的体外酶标测活方法的建立与应用[J]. 中国生物工程杂志, 2010, 30(07): 0-0.
[8] 芦秀丽1刘剑利1,曹向宇,侯芳芳,高兵. 24-脱氢胆固醇还原酶抗氧化应激作用的功能结构域的鉴定[J]. 中国生物工程杂志, 2009, 29(05): 50-54.
[9] 巫晔翔, 洪斌, 司书毅. 高密度脂蛋白受体(SR-BI)和胆固醇逆转运[J]. 中国生物工程杂志, 2003, 23(5): 22-26.
[10] 郭军宁. 调节激素周期——不用节食锻炼可减肥和降低胆固醇[J]. 中国生物工程杂志, 1991, 11(1): 59-60.
[11] 柯为. 胆固醇氧化酶研究的新进展[J]. 中国生物工程杂志, 1987, 7(5): 73-73.