Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (8): 109-127    DOI: 10.13523/j.cb.2203052
综述     
微囊藻毒素生物治理技术研究进展*
柴玉婕1,2,冯佳1,2,周见庭1,2,蒋建兰1,2,**()
1.天津大学化工学院 天津 300072
2.天津大学系统生物工程教育部重点实验室 天津 300072
Progress on Biological Treatment Technologies of Microcystins
CHAI Yu-jie1,2,FENG Jia1,2,ZHOU Jian-ting1,2,JIANG Jian-lan1,2,**()
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2. Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin 300072, China
 全文: PDF(2148 KB)   HTML
摘要:

近年来,随着全球气候变暖和水体富营养化程度加深,蓝藻水华频繁暴发。微囊藻毒素是有害蓝藻产生及释放的危害最大的一类蓝藻毒素,对生态环境和公众健康造成了严重的威胁。因此,寻求有效的微囊藻毒素降解方法已成为全球科学领域的研究热点。针对微囊藻毒素生物治理技术展开综述,阐述了微囊藻毒素的产生、理化性质及生物毒性,总结了微生物、水生植物、浮游动物等自然生物降解微囊藻毒素的能力。在此基础上概述了生物滤池、人工湿地、生态浮床、膜生物膜反应器等生物治理技术对微囊藻毒素的去除效果,分析了现有微囊藻毒素生物处理方法的优势和局限性,并对今后的研究方向提出展望,为解决水环境中微囊藻毒素的污染问题提供思路。

关键词: 微囊藻毒素生物降解生物治理技术蓝藻水华    
Abstract:

In recent years, with global warming and the increasing intensity of water eutrophication, cyanobacterial blooms occur frequently. Microcystins are the most harmful cyanobacterial toxins produced and released by harmful cyanobacteria, which have had a harmful impact on the ecological environment and public health. Therefore, seeking effective microcystin degradation methods has become a research hotspot in the global scientific fields. The biological treatment technologies of microcystins are reviewed, the production, physicochemical properties and biotoxicity of microcystins are described, and the degradation efficiency of microcystins by microorganisms, aquatic plants and zooplankton is summarized. On this basis, the removal effects of biological treatment technologies such as biological filter, constructed wetland, ecological floating bed, and membrane biofilm reactor on microcystins are overviewed, and the advantages and limitations of existing microcystins’ biological treatment methods are analyzed. The further research subjects are also proposed. All these provide ideas for solving the pollution problem of microcystins in the water environment.

Key words: Microcystins    Biodegradation    Biological treatment technology    Cyanobacterial blooms
收稿日期: 2022-03-23 出版日期: 2022-09-07
ZTFLH:  Q819  
基金资助: * 国家重点研发计划(2018YFA0903000)
通讯作者: 蒋建兰     E-mail: jljiang@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
柴玉婕
冯佳
周见庭
蒋建兰

引用本文:

柴玉婕,冯佳,周见庭,蒋建兰. 微囊藻毒素生物治理技术研究进展*[J]. 中国生物工程杂志, 2022, 42(8): 109-127.

CHAI Yu-jie,FENG Jia,ZHOU Jian-ting,JIANG Jian-lan. Progress on Biological Treatment Technologies of Microcystins. China Biotechnology, 2022, 42(8): 109-127.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2203052        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I8/109

图1  MCs的结构通式
菌株分类 功能菌株 mlr基因 目标MCs 初始MCs浓度 MCs降解效率 参考文献
α变形菌 Sphingomonas sp. CBA4 -1) MC-RR 200 μg/L 100% (36 h) [77]
α变形菌 Sphingomonas sp. ACM-3962 mlrABCD MC-LR, MC-RR 10,10 mg/L 1.6, 1.5 mg/(L·h) [63]
α变形菌 Sphingomonas B-9 mlrA MC-LR, MC-RR 2, 2 mg/L 0.08, 0.08 mg/(L·h) [78-79]
α变形菌 Sphingomonas sp. NV-3 mlrABC MC-LR, [Dha7] MC-LR 25 mg/L3) 0.35 mg/(L·h) [80]
α变形菌 Sphingomonas 7CY -1) MC-LR, MC-LF, MC-LW,
MC-LY
6, 6, 6, 6 mg/L t 1 / 2 2 ): 2.4, 3.3, 3.3, 3.3 d [81]
α变形菌 Sphingomonas Y2 mlrA MC-LR, MC-RR,MC-YR 18, 18, 22 mg/L 0.23, 0.54, 2.5 mg/(L·h) [82]
α变形菌 Novosphingobium sp. KKU15 -1) [Dha7] MC-LR 5 μg/mL 100% (72 h) [83]
α变形菌 Novosphingobium sp. ERW19 mlrA MC-LR, MC-RR 0.1, 0.1 mg/L 0.008, 0.008 mg/(L·h) [84]
α变形菌 Novosphingobium sp. ERN07 mlrA MC-LR, MC-RR 0.1, 0.1 mg/L 0.005, 0.005 mg/(L·h) [84]
α变形菌 Novosphingobium sp. KKU25s mlrABCD [Dha7] MC-LR 25 μg/L 1.04 μg/(L·h) [68]
α变形菌 Novosphingobium sp. THN1 mlrA MC-LR 1.5 mg/L >95% (3 h) [85]
α变形菌 Rhizobium sp. TH mlrABCD MC-LR 8.3 mg/L 100% (10 h) [69]
α变形菌 Rhizobium sp. AQ_MP mlrBC MC-RR -1) -1) [56]
α变形菌 Sphingopyxis sp. m6 mlrABCD MC-LR,MC-RR 50 μg/L, 1 mg/L 100% (4 h), 100%(6 h) [75,86]
α变形菌 Sphingopyxis sp. N5 mlrA MC-LR, MC-RR,MC-YR,
MC-LA
5, 5, 5, 5 mg/L 100%, 100%, 89%,
68% (24 h)
[87]
α变形菌 Sphingopyxis sp. USTB-05 mlrABCD MC-LR, MC-RR,MC-YR 28.8, 50.2, 14.8 mg/L 1.2, 0.7, 1.48 mg/(L·h) [70,71,88]
α变形菌 Sphingopyxis sp. C-1 mlrABC MC-LR, MC-RR 1, -1) mg/L 0.33, -1) mg/(L·h) [89]
α变形菌 Sphingopyxis sp. TT25 mlrA MC-LR, MC-RR, MC-YR,
MC-LA
0.01, 0.01, 0.01,
0.01 mg/L
2×10-4 mg/(L·h) [90]
α变形菌 Sphingopyxis sp. IM-1 mlrABCD MC-LR, MC-RR,MC-YR 0.92, 0.04, 0.04 mg/L t 1 / 2 2 ): >2,<2, -1) h [91]
α变形菌 Sphingopyxis sp. IM-2 mlrABCD MC-LR, MC-RR,MC-YR 0.92, 0.04, 0.04 mg/L t 1 / 2 2 ): ≈110, ≈110, -1) h [91]
α变形菌 Sphingopyxis sp. IM-3 mlrABCD MC-LR, MC-RR,MC-YR 0.92, 0.04, 0.04 mg/L t 1 / 2 2 ): ≈30, ≈20, -1) h [91]
α变形菌 Sphingopyxis sp. MB-E mlrABCD MC-LR, MC-YR, MC-LF,
MC-LW, MC-LY
0.1, 0.1, 0.1, 0.1,
0.1 mg/L
6.25×10-4 mg/(L·h) [92]
α变形菌 Sphingopyxis sp. a7 mlrACD MC-LR 14.3 mg/L 3.33 mg/(L·h) [93]
α变形菌 Sphingopyxis sp. x20 mlrABCD MC-LR 5 mg/L 100% (10 h) [94]
α变形菌 Sphingopyxis sp. YF1 mlrABCD MC-LR 10 μg/mL 51.7 μg/(mL·h) [76]
菌株分类 功能菌株 mlr基因 目标MCs 初始MCs浓度 MCs降解效率 参考文献
α变形菌 Sphingopyxis sp. LH21 mlrABCD MC-LR, MC-LA 3, 5 μg/L 100%, 100% (2 d) [95]
α变形菌 Sphingosinicella B-9 mlrABC MC-LR, MC-RR 2, 2 mg/L 0.08, 0.08 mg/(L·h) [78-79]
α变形菌 Ochrobactrum sp. FDT5 -1) MC-LR 467.8 mg/L 60.44% (7 d) [96]
β变形菌 Ralstonia solanacearum -1) MC-LR 9.4 mg/L 100% (24 h) [97]
β变形菌 Bordetella sp. MC-LTH1 mlrA MC-LR, MC-RR 11, 5 mg/L 100% (42 h) [98]
β变形菌 Bordetella sp. mlrABCD MC-LR 15 μg/L ≈100% (24 h) [99]
β变形菌 Methylobacillus J10 -1) MC-LR, MC-RR 3.5, 4.3 mg/L <0.24, >0.24 mg/(L·h) [100]
β变形菌 Paucibacter sp. CH -1) MC-LR 11.6 μg/mL 100% (10 h) [101]
β变形菌 Paucibacter DSMZ-16998 -1) MC-LR, MC-RR, MC-LF,
MC-LW, MC-LY
10, 10, 10, 10, 10 mg/L t 1 / 2 2 ): 9, 10, 6, 7, 6 d [102]
β变形菌 Paucibacter sp. IM-4 -1) MC-LR, MC-RR,MC-YR 0.92, 0.04, 0.04 mg/L t 1 / 2 2 ): ≈35, ≈35, -1) h [91]
β变形菌 Paucibacter toxinivorans (2C20) -1) MC-LR, MC-RR,MC-YR,
MC-LF
10, 10, 10, 10 μg/mL 60%, 45%, 70%, 35%
(7 d)
[103]
β变形菌 Acidovorax facilis LEw-2 -1) MC-LR 5 μg/mL 100% (48 h) [104]
γ变形菌 Stenotrophomona sp. EMS mlrA MC-LR, MC-RR 0.7, 1.7 μg/mL 100% (24 h) [105]
γ变形菌 Stenotrophomonas sp. LEw-1278 -1) MC-LR 5 μg/mL 100% (48 h) [104]
γ变形菌 Stenotrophomonas sp. YFMCD1-2 -1) MC-LR 5 μg/mL 0.5 μg/(mL·h) [106]
γ变形菌 Stenotrophomonas sp. MC-LTH2 -1) MC-LR, MC-RR 21.2, 39.2 mg/L 3.0, 5.6 mg/(L·h) [107]
γ变形菌 Stenotrophomonas sp. 4B4 mlrABCD MC-LR, MC-RR,MC-LW,
MC-LF
5.5, 5.5, 5.5,
5.5 μg/mL
100% (10 d), 100% (12 d),
-1), 100% (14 d)
[108]
γ变形菌 Morganella morganii LAAFP-
C25216
-1) MC-LR 20 μg/L 4.75 mg/(L·h) [109]
γ变形菌 Pseudomonas aeruginosa
UCBPP-PA14
-1) MC-LR, MC-RR,MC-YR,
MC-LW
348.5 μg/L3) 84% (30 d) [51]
γ变形菌 Pseudomonas putida KCCM 10464 -1) MC-LR, MC-RR,MC-YR,
MC-LW
348.5 μg/L3) 34% (30 d) [51]
γ变形菌 Pseudomonas sp. Lake Mead-
C25459
-1) MC-LR 20 μg/L 4.73 mg/(L·h) [109]
γ变形菌 Pseudomonas sp.
Sphingomonas-C25358
-1) MC-LR 20 μg/L 4.67 mg/(L·h) [109]
γ变形菌 Pseudomonas sp. LEw-2166 -1) MC-LR 5 μg/mL 100% (48 h) [104]
γ变形菌 Pseudomonas sp. LEw-1033 -1) MC-LR 5 μg/mL 100% (48 h) [104]
γ变形菌 Pseudomonas sp. LEw-2029 -1) MC-LR 5 μg/mL 0.25 μg/(mL·h) [110]
γ变形菌 Pseudomonas aeruginosa DMXS -1) [D-Leu1]MC-LR 1 μg/L 95% (24 d) [111]
γ变形菌 Pseudomonas sp. WC-4 -1) MC-LR, MC-RR 1 025.76, 1 263.45 μg/L 96.25%, 98.41% (18 d) [112]
γ变形菌 Klebsiella sp. YFMCD1-1 -1) MC-LR 5 μg/mL 0.5 μg/(mL·h) [106]
γ变形菌 Acinetobacter sp. CMDB-2 -1) MC-LR 6 μg/L 94% (14 h) [54]
γ变形菌 Acinetobacter sp. WC-5 -1) MC-LR, MC-RR 1 025.76, 1 263.45 μg/L 92.73%, 92.95% (18 d) [112]
γ变形菌 Aeromonas sp. -1) MC-LR 10 μg/mL 48% (14 d) [113]
γ变形菌 Achromobacter LG1 -1) MC-LR 200 μg/L 79.5% (7 d) [114]
γ变形菌 Enterobacter sp. YF3 -1) MC-LR 3 μg/mL 0.34 μg/(mL·h) [115]
厚壁菌 Lactobacillus rhamnosus GG -1) MC-LR 100 μg/L 49.3% (48 h) [116]
厚壁菌 Lactobacillus rhamnosus LC-705 -1) MC-LR 100 μg/L 50.3% (48 h) [116]
厚壁菌 Bacillus sp. AMRI-03 mlrA MC-RR 10 mg/L 100% (5 d) [117]
厚壁菌 Bacillus sp. AMRI-03 mlrA MC-RR 10 mg/L 100% (5 d) [117]
厚壁菌 Bacillus sp. JZ-2013 -1) MC-LR 15 mg/L 80% (9 d) [118]
厚壁菌 Bacillus sp. SSZ01 mlrA MC-RR 10 mg/L 100% (4 d) [119]
菌株分类 功能菌株 mlr基因 目标MCs 初始MCs浓度 MCs降解效率 参考文献
厚壁菌 Bacillus sp. AK3 -1) MC-RR 22 μg/mL 73%(3 d) [120]
厚壁菌 Brevibacillus brevis LEw-1238 -1) MC-LR 5 μg/mL 100% (48 h) [104]
厚壁菌 Bacillus sp. LEw-2010 -1) MC-LR 5 μg/mL 100% (48 h) [104]
厚壁菌 Lysinibacillus boronitolerans CQ5 -1) MC-LR 14.12 μg/L 88.88% (244 h) [121]
放线菌 Rhodococcus C1 -1) MC-LR, MC-RR, MC-LF,
MC-LW, MC-LY
10, 10, 10, 10, 10 mg/L t 1 / 2 2 ): 9, 10, 8, 6, 5 d [102]
放线菌 Brevibacterium F3 -1) MC-LR, MC-RR, MC-LF,
MC-LW, MC-LY
10, 10, 10, 10, 10 mg/L t 1 / 2 2 ): 9, 10, 7, 9, 6 d [102]
放线菌 Arthrobacter sp. C6 -1) MC-LR, MC-RR, MC-LF,
MC-LW, MC-LY
10, 10, 10, 10, 10 mg/L t 1 / 2 2 ): 9, 10, 8, 8, 5 d [102]
Arthrobacter sp. F7 -1) MC-LR, MC-RR, MC-LF,
MC-LW, MC-LY
10, 10, 10, 10, 10 mg/L t 1 / 2 2 ): 9, 10, 6, 7, 6 d [102]
放线菌 -1) MC-LR, MC-RR, MC-LF,
MC-LW, MC-LY
10, 10, 10, 10, 10 mg/L t 1 / 2 2 )9, 10, 7, 6, 7 d [102]
放线菌 Arthrobacter sp. F10 -1) MC-LR 5 μg/mL 99% (3 d) [122]
放线菌 Arthrobacter sp. R1 -1) MC-LR 5 μg/mL 100% (3 d) [122]
放线菌 Arthrobacter sp. R6 -1) MC-LR 5 μg/mL 100% (3 d) [122]
放线菌 Arthrobacter sp. R9 -1) MC-LR 5 μg/mL 100% (3 d) [122]
放线菌 Arthrobacter sp. 423 -1) MC-LR 2 μg/L 24.87% (9 d) [123]
放线菌 Arthrobacter sp. 443 -1) MC-LR 2 μg/L 15.92% (9 d) [123]
放线菌 Bifidobacterium lactis Bb12 -1) MC-LR 100 μg/L 58.1% (24 h) [116]
放线菌 Bifidobacterium longum 46 -1) MC-LR 100 μg/L 47.0% (24 h) [116]
放线菌 Bifidobacterium lactis 420 -1) MC-LR 100 μg/L 47.7% (24 h) [116]
真菌 Trichaptum abietinum 1302BG -1) MC-LR 0.05 mg/L 100% (12 h) [124-125]
真菌 Schizophyllum commune -1) MC-LR 15 mg/L 100% (14 h) [126]
真菌 Trichoderma citrinoviride
kkuf-0955
-1) MCs 2.7 mg/L 100% (72 h) [52]
真菌 Mucor hiemalis EH5 -1) MC-LR 1 mg/L 58% (24 h) [127]
真菌 Mucor hiemalis f. irnsingii
strain EH5
-1) MC-LR 0.03 mg/L 37% (24 h) [128]
真菌 Aureobasidium pullulans
KKUY0701
-1) MCs 2 mg/L 56.5% (1 h) [129]
表1  MCs降解菌株及其降解特性
图2  鞘脂单胞菌(Sphingopyxis sp. YF1)[76]降解MC-LR示意图
生物处理技术 MCs去除机制 MCs去除效率 优势 局限 文献
生物滤池 机械截留、物理吸附、微生物降解 54%~96% 填料耐用、能耗低、抗冲击负荷能力强、使用不受季节限制等 不适宜处理大量污水,容易造成滤料堵塞 [152-154]
人工湿地 物理吸附、植物吸收、植物根系微生物降解 75%~99% 缓冲容量大、工艺简单、运行成本低等 占地面积大、植物易受病虫害影响 [168-170]
生态浮床 植物吸收、动物摄食、植物根系微生物降解 48%~77% 不占地、植物易栽培等 施工周期长、使用范围受限、难以抵抗极端条件
178]
膜生物膜反应器 微生物降解 ≈100% 处理效率高、无泡高效曝气、传质阻力小、占地面积小等 膜污染 [183-184]
表2  MCs生物处理技术特点概述
[1] Moreira C, Vasconcelos V, Antunes A. Phylogeny of microcystins: evidence of a biogeographical trend? Current Microbiology, 2013, 66(3): 214-221.
doi: 10.1007/s00284-012-0258-5
[2] Bourne D G, Blakeley R L, Riddles P, et al. Biodegradation of the cyanobacterial toxin microcystin LR in natural water and biologically active slow sand filters. Water Research, 2006, 40(6): 1294-1302.
doi: 10.1016/j.watres.2006.01.022 pmid: 16516264
[3] Huisman J, Codd G A, Paerl H W, et al. Cyanobacterial blooms. Nature Reviews Microbiology, 2018, 16(8): 471-483.
doi: 10.1038/s41579-018-0040-1 pmid: 29946124
[4] Carmichael W W. Cyanobacteria secondary metabolites:the cyanotoxins. Journal of Applied Bacteriology, 1992, 72(6): 445-459.
pmid: 1644701
[5] Harke M J, Steffen M M, Gobler C J, et al. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae, 2016, 54: 4-20.
doi: 10.1016/j.hal.2015.12.007
[6] Svircev Z, Lalic D, Bojadzija Savic G, et al. Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Archives of Toxicology, 2019, 93(9): 2429-2481.
doi: 10.1007/s00204-019-02524-4
[7] 薛庆举, 苏小妹, 谢丽强. 蓝藻毒素对底栖动物的毒理学研究进展. 生态学报, 2015, 35(14): 4570-4578.
Xue Q J, Su X M, Xie L Q. Advances on cyanotoxin toxicology of zoobenthos. Acta Ecologica Sinica, 2015, 35(14): 4570-4578.
[8] Jiang W B, Yu Z M, Cao X H, et al. Effects of soluble organics on the settling rate of modified clay and development of improved clay formulations for harmful algal bloom control. Environmental Pollution, 2021, 289: 117964.
doi: 10.1016/j.envpol.2021.117964
[9] Liu C, Ersan M S, Wagner E, et al. Toxicity of chlorinated algal-impacted waters: formation of disinfection byproducts vs. reduction of cyanotoxins. Water Research, 2020, 184: 116145.
doi: 10.1016/j.watres.2020.116145
[10] Kumar P, Kaur Brar S, Surampalli R Y. Ozonation in tandem with biosand filtration to remove microcystin-LR. Journal of Environmental Engineering, 2020, 146(11): 04020124.
doi: 10.1061/(ASCE)EE.1943-7870.0001801
[11] Xie G Y, Hu X J, Du Y X, et al. Light-driven breakdown of microcystin-LR in water: a critical review. Chemical Engineering Journal, 2021, 417: 129244.
doi: 10.1016/j.cej.2021.129244
[12] 鲁韦坤, 余凌翔, 欧晓昆, 等. 滇池蓝藻水华发生频率与气象因子的关系. 湖泊科学, 2017, 29(3): 534-545.
doi: 10.18307/2017.0302
Lu W K, Yu L X, Ou X K, et al. Relationship between occurrence frequency of cyanobacteria bloom and meteorological factors in Lake Dianchi. Journal of Lake Sciences, 2017, 29(3): 534-545.
doi: 10.18307/2017.0302
[13] 江敏, 王婧, 许慧. 蓝藻毒素去除方法研究进展. 生态学杂志, 2014, 33(12): 3455-3462.
Jiang M, Wang J, Xu H. Research progress on the methods of cyanobacterial toxin removal. Chinese Journal of Ecology, 2014, 33(12): 3455-3462.
[14] 吴溶, 崔莉凤, 卢珊, 等. 温度光照对铜绿微囊藻生长及藻毒素释放的影响. 环境科学与技术, 2010, 33(S1): 33-36, 51.
Wu R, Cui L F, Lu S, et al. The influence of temperature and illumination on the Microcystis production. Environmental Science & Technology, 2010, 33(S1): 33-36, 51.
[15] 金相灿, 李兆春, 郑朔方, 等. 铜绿微囊藻生长特性研究. 环境科学研究, 2004, 17(S1): 52-54, 61.
Jin X C, Li Z C, Zheng S F, et al. Studies on the growth characteristics of Microcystis aeruginosa. Research of Environmental Sciences, 2004, 17(S1): 52-54, 61.
[16] Watanabe M F, Oishi S. Effects of environmental factors on toxicity of a cyanobacterium (Microcystis aeruginosa) under culture conditions. Applied and Environmental Microbiology, 1985, 49(5): 1342-1344.
doi: 10.1128/aem.49.5.1342-1344.1985 pmid: 3923932
[17] 张虎. 氮磷浓度比对铜绿微囊藻生长及产毒影响研究. 合肥: 合肥工业大学, 2020.
Zhang H. Effects of the ratio of nitrogen and phosphorus concentration on growth and microcystin of Microcystis aeruginosa. Hefei: Hefei University of Technology, 2020.
[18] Wang C, Wang X, Wang P F, et al. Effects of iron on growth, antioxidant enzyme activity, bound extracellular polymeric substances and microcystin production of Microcystis aeruginosa FACHB-905. Ecotoxicology and Environmental Safety, 2016, 132: 231-239.
doi: 10.1016/j.ecoenv.2016.06.010
[19] Tsai K P. Effects of two copper compounds on Microcystis aeruginosa cell density, membrane integrity, and microcystin release. Ecotoxicology and Environmental Safety, 2015, 120: 428-435.
doi: 10.1016/j.ecoenv.2015.06.024
[20] 黄鑫, 魏晓璐, 冯悦, 等. 微囊藻毒素生物合成基因及其功能研究进展. 生命科学研究, 2014, 18(5): 445-452.
Huang X, Wei X L, Feng Y, et al. Research advances in microcystin biosynthesis gene and its function. Life Science Research, 2014, 18(5): 445-452.
[21] Pearson L, Mihali T, Moffitt M, et al. On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. Marine Drugs, 2010, 8(5): 1650-1680.
doi: 10.3390/md8051650 pmid: 20559491
[22] Porojan C, Abbas F, Mowe M A D, et al. Survey of microcystins in Singapore’s reservoirs using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Marine and Freshwater Research, 2020, 71(5): 659.
doi: 10.1071/MF18432
[23] Chernova E, Sidelev S, Russkikh I, et al. Spatial distribution of cyanotoxins and ratios of microcystin to biomass indicators in the reservoirs of the Volga, Kama and Don Rivers, the European part of Russia. Limnologica, 2020, 84: 125819.
doi: 10.1016/j.limno.2020.125819
[24] 葛思敏. 重点湖泊微囊藻毒素时空分布特征及综合健康风险评估. 北京: 中国环境科学研究院, 2021.
Ge S M. Spatiotemporal distribution characteristics of microcystins in key lakes and comprehensive health risk assessment. Beijing: Chinese Research Academy of Environmental Sciences, 2021.
[25] 袁丽娟, 廖且根, 张莉, 等. 鄱阳湖微囊藻毒素时空分布格局及其与理化和生物因子的关系. 环境科学, 2018, 39(1): 450-459.
Yuan L J, Liao Q G, Zhang L, et al. Seasonal and spatial variations of microcystins and their relationships with physiochemical and biological factors in Poyang Lake. Environmental Science, 2018, 39(1): 450-459.
[26] Peng L, Liu Y M, Chen W, et al. Health risks associated with consumption of microcystin-contaminated fish and shellfish in three Chinese lakes: significance for freshwater aquacultures. Ecotoxicology and Environmental Safety, 2010, 73(7): 1804-1811.
doi: 10.1016/j.ecoenv.2010.07.043
[27] 魏代春, 苏婧, 陈学民, 等. 阳澄湖和滆湖微囊藻毒素分布及其与富营养化因子的关系. 环境工程学报, 2014, 8(6): 2322-2328.
Wei D C, Su J, Chen X M, et al. Distribution of microcystins and its relationship with eutrophication factors in Yangcheng Lake and Gehu Lake. Chinese Journal of Environmental Engineering, 2014, 8(6): 2322-2328.
[28] 舒秀波, 谢丽强, 万翔, 等. 太湖梅梁湾水体及沉积物中微囊藻毒素含量垂向分布特征. 湖泊科学, 2019, 31(4): 976-987.
doi: 10.18307/2019.0426
Shu X B, Xie L Q, Wan X, et al. Vertical distribution characteristics of microcystin concentration in water and sediment of Meiliang Bay, Lake Taihu. Journal of Lake Sciences, 2019, 31(4): 976-987.
doi: 10.18307/2019.0426
[29] 齐继清, 李秋华, 陈文生, 等. 贵州百花水库微囊藻毒素的时空分布特征. 生态学杂志, 2019, 38(9): 2741-2748.
Qi J Q, Li Q H, Chen W S, et al. Temporal and spatial distribution of microcystin in Baihua Reservoir, Guizhou Province, China. Chinese Journal of Ecology, 2019, 38(9): 2741-2748.
[30] Buratti F M, Manganelli M, Vichi S, et al. Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Archives of Toxicology, 2017, 91(3): 1049-1130.
doi: 10.1007/s00204-016-1913-6 pmid: 28110405
[31] Rastogi R P, Sinha R P, Incharoensakdi A. The cyanotoxin-microcystins: current overview. Reviews in Environmental Science and Bio/Technology, 2014, 13(2): 215-249.
doi: 10.1007/s11157-014-9334-6
[32] Carmichael W W. The toxins of cyanobacteria. Scientific American, 1994, 270(1): 78-86.
doi: 10.1038/scientificamerican0194-78 pmid: 8284661
[33] 孔赟, 徐向阳, 朱亮, 等. 环境水体微囊藻毒素微生物降解技术研究进展. 应用生态学报, 2011, 22(6): 1646-1652.
pmid: 21941771
Kong Y, Xu X Y, Zhu L, et al. Microbial degradation of microcystins in water environment: a review. Chinese Journal of Applied Ecology, 2011, 22(6): 1646-1652.
pmid: 21941771
[34] Lin W, Hung T C, Kurobe T, et al. Microcystin-induced immunotoxicity in fishes: a scoping review. Toxins, 2021, 13(11): 765.
doi: 10.3390/toxins13110765
[35] Zurawell R W, Chen H R, Burke J M, et al. Hepatotoxic cyanobacteria: a review of the biological importance of microcystins in freshwater environments. Journal of Toxicology and Environmental Health, Part B, 2005, 8(1): 1-37.
doi: 10.1080/10937400590889412
[36] Zastepa A, Pick F R, Blais J M. Distribution and flux of microcystin congeners in lake sediments. Lake and Reservoir Management, 2017, 33(4): 444-451.
doi: 10.1080/10402381.2017.1362491
[37] 于晓娟, 周江亚, 李亚红, 等. 微囊藻毒素性质及分析处理方法研究进展. 环境科学与技术, 2010, 33(S1): 538-543, 546.
Yu X J, Zhou J Y, Li Y H, et al. Characterization of microcystins and analysis methods for removal of microcystins. Environmental Science & Technology, 2010, 33(S1): 538-543, 546.
[38] Zhang Y Y, Vo Duy S, Munoz G, et al. Phytotoxic effects of microcystins, anatoxin-a and cylindrospermopsin to aquatic plants: a meta-analysis. Science of the Total Environment, 2022, 810: 152104.
doi: 10.1016/j.scitotenv.2021.152104
[39] Chen H Q, Zhao J, Li Y, et al. Epigenetic inactivation of LHX6 mediated microcystin-LR induced hepatocarcinogenesis via the Wnt/β-catenin and P53 signaling pathways. Environmental Pollution, 2019, 252: 216-226.
doi: 10.1016/j.envpol.2019.05.049
[40] He L X, Huang Y J, Guo Q N, et al. Chronic microcystin-LR exposure induces hepatocarcinogenesis via increased gankyrin in vitro and in vivo. Cellular Physiology and Biochemistry, 2018, 49(4): 1420-1430.
doi: 10.1159/000493446
[41] Arman T, Clarke J D. Microcystin toxicokinetics, molecular toxicology, and pathophysiology in preclinical rodent models and humans. Toxins, 2021, 13(8): 537.
doi: 10.3390/toxins13080537
[42] Brózman O, Kubickova B, Babica P, et al. Microcystin-LR does not alter cell survival and intracellular signaling in human bronchial epithelial cells. Toxins, 2020, 12(3): 165.
doi: 10.3390/toxins12030165
[43] Plaas H E, Paerl H W. Toxic cyanobacteria: a growing threat to water and air quality. Environmental Science & Technology, 2021, 55(1): 44-64.
doi: 10.1021/acs.est.0c06653
[44] Wiśniewska K, Lewandowska A U, Sliwińska-Wilczewska S. The importance of cyanobacteria and microalgae present in aerosols to human health and the environment: Review study. Environment International, 2019, 131: 104964.
doi: 10.1016/j.envint.2019.104964
[45] Massey I Y, Yang F, Ding Z, et al. Exposure routes and health effects of microcystins on animals and humans: a mini-review. Toxicon, 2018, 151: 156-162.
doi: S0041-0101(18)30306-4 pmid: 30003917
[46] Alosman M, Cao L H, Massey I Y, et al. The lethal effects and determinants of microcystin-LR on heart: a mini review. Toxin Reviews, 2021, 40(4): 517-526.
doi: 10.1080/15569543.2019.1711417
[47] Shahmohamadloo R S, Ortiz Almirall X, Simmons D B D, et al. Cyanotoxins within and outside of Microcystis aeruginosa cause adverse effects in rainbow trout(Oncorhynchus mykiss). Environmental Science & Technology, 2021, 55(15): 10422-10431.
doi: 10.1021/acs.est.1c01501
[48] Yang S, Chen L, Wen C, et al. microRNA expression profiling involved in MC-LR-induced hepatotoxicity using high-throughput sequencing analysis. Journal of Toxicology and Environmental Health, Part A, 2018, 81(5): 89-97.
doi: 10.1080/15287394.2017.1415580
[49] Gorchev H G, Ozolins G. WHO guidelines for drinking-water quality. WHO Chronicle, 1984, 38(3): 104-108.
pmid: 6485306
[50] Mohamed Z A. Breakthrough of Oscillatoria limnetica and microcystin toxins into drinking water treatment plants-examples from the Nile River, Egypt. Water SA, 2016, 42(1): 161.
doi: 10.4314/wsa.v42i1.16
[51] Kang Y H, Park C S, Han M S. Pseudomonas aeruginosa UCBPP-PA14 a useful bacterium capable of lysing Microcystis aeruginosa cells and degrading microcystins. Journal of Applied Phycology, 2012, 24(6): 1517-1525.
doi: 10.1007/s10811-012-9812-6
[52] Mohamed Z A, Hashem M, Alamri S A. Growth inhibition of the cyanobacterium Microcystis aeruginosa and degradation of its microcystin toxins by the fungus Trichoderma citrinoviride. Toxicon, 2014, 86: 51-58.
doi: 10.1016/j.toxicon.2014.05.008
[53] Yi Y L, Yu X B, Zhang C, et al. Growth inhibition and microcystin degradation effects of Acinetobacter guillouiae A 2 on Microcystis aeruginosa. Research in Microbiology, 2015, 166(2): 93-101.
doi: 10.1016/j.resmic.2014.12.013
[54] Li H, Ai H N, Kang L, et al. Simultaneous Microcystis algicidal and microcystin degrading capability by a single Acinetobacter bacterial strain. Environmental Science & Technology, 2016, 50(21): 11903-11911.
doi: 10.1021/acs.est.6b03986
[55] Pal M, Pal S, Qureshi A, et al. Perspective of cyanobacterial harmful algal bloom (HAB) mitigation: Microcystis toxin degradation by bacterial consortia. Indian Journal of Experimental Biology, 2018, 56(7): 511-518.
[56] Pal M, Purohit H J, Qureshi A. Genomic insight for algicidal activity in Rhizobium strain AQ_MP. Archives of Microbiology, 2021, 203(8): 5193-5203.
doi: 10.1007/s00203-021-02496-z
[57] Zeng Y D, Wang J Y, Yang C Y, et al. A Streptomyces globisporus strain kills Microcystis aeruginosa via cell-to-cell contact. Science of the Total Environment, 2021, 769: 144489.
doi: 10.1016/j.scitotenv.2020.144489
[58] Yang F, Guo J, Huang F Y, et al. Removal of microcystin-LR by a novel native effective bacterial community designated as YFMCD 4 isolated from lake Taihu. Toxins, 2018, 10(9): 363.
doi: 10.3390/toxins10090363
[59] Santos A, Rachid C, Pacheco A B, et al. Biotic and abiotic factors affect microcystin-LR concentrations in water/sediment interface. Microbiological Research, 2020, 236: 126452.
doi: 10.1016/j.micres.2020.126452
[60] Morón-López J, Nieto-Reyes L, Molina S, et al. Exploring microcystin-degrading bacteria thriving on recycled membranes during a cyanobacterial bloom. Science of the Total Environment, 2020, 736: 139672.
doi: 10.1016/j.scitotenv.2020.139672
[61] Salter C, VanMensel D, Reid T, et al. Investigating the microbial dynamics of microcystin-LR degradation in Lake Erie sand. Chemosphere, 2021, 272: 129873.
doi: 10.1016/j.chemosphere.2021.129873
[62] Ding Q, Song X L, Yuan M X, et al. Multiple pathways for the anaerobic biodegradation of microcystin-LR in the enriched microbial communities from Lake Taihu. Environmental Pollution, 2022, 297: 118787.
doi: 10.1016/j.envpol.2022.118787
[63] Jones G J, Bourne D G, Blakeley R L, et al. Degradation of the cyanobacterial hepatotoxin microcystin by aquatic bacteria. Natural Toxins, 1994, 2(4): 228-235.
pmid: 7952948
[64] Bourne D G, Jones G J, Blakeley R L, et al. Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin LR. Applied and Environmental Microbiology, 1996, 62(11): 4086-4094.
doi: 10.1128/aem.62.11.4086-4094.1996 pmid: 8899999
[65] Dziga D, Wasylewski M, Szetela A, et al. Verification of the role of MlrC in microcystin biodegradation by studies using a heterologously expressed enzyme. Chemical Research in Toxicology, 2012, 25(6): 1192-1194.
doi: 10.1021/tx300174e
[66] Shimizu K, Maseda H, Okano K, et al. Enzymatic pathway for biodegrading microcystin LR in Sphingopyxis sp. C-1. Journal of Bioscience and Bioengineering, 2012, 114(6): 630-634.
doi: 10.1016/j.jbiosc.2012.07.004 pmid: 22883536
[67] Wang R P, Li J M, Li J. Functional and structural analyses for MlrC enzyme of Novosphingobium sp. THN1 in microcystin-biodegradation: involving optimized heterologous expression, bioinformatics and site-directed mutagenesis. Chemosphere, 2020, 255: 126906.
doi: 10.1016/j.chemosphere.2020.126906
[68] Phujomjai Y, Somdee A, Somdee T. Biodegradation of microcystin[Dha(7)] MC-LR by a novel microcystin-degrading bacterium in an internal airlift loop bioreactor. Water Science and Technology, 2016, 73(2): 267-274.
doi: 10.2166/wst.2015.482 pmid: 26819381
[69] Zhu X Y, Shen Y T, Chen X G, et al. Biodegradation mechanism of microcystin-LR by a novel isolate of Rhizobium sp. TH and the evolutionary origin of the mlrA gene. International Biodeterioration & Biodegradation, 2016, 115: 17-25.
[70] Xu H M, Wang H S, Xu Q Q, et al. Pathway for biodegrading microcystin-YR by Sphingopyxis sp. USTB-05. PLoS One, 2015, 10(4): e0124425.
doi: 10.1371/journal.pone.0124425
[71] Zhang M L, Pan G, Yan H. Microbial biodegradation of microcystin-RR by bacterium Sphingopyxis sp. USTB-05. Journal of Environmental Sciences, 2010, 22(2): 168-175.
doi: 10.1016/S1001-0742(09)60089-9
[72] Xiao C B, Yan H, Wang J F, et al. Microcystin-LR biodegradation by Sphingopyxis sp. USTB-05. Frontiers of Environmental Science & Engineering in China, 2011, 5(4): 526-532.
[73] Shimizu K, Maseda H, Okano K, et al. Enzymatic pathway for biodegrading microcystin LR in Sphingopyxis sp. C-1. Journal of Bioscience and Bioengineering, 2012, 114(6): 630-634.
doi: 10.1016/j.jbiosc.2012.07.004 pmid: 22883536
[74] Kato H, Tsuji K, Harada K I. Microbial degradation of cyclic peptides produced by bacteria. The Journal of Antibiotics, 2009, 62(4): 181-190.
doi: 10.1038/ja.2009.8
[75] Ding Q, Liu K Y, Xu K, et al. Further understanding of degradation pathways of microcystin-LR by an indigenous Sphingopyxis sp. in environmentally relevant pollution concentrations. Toxins, 2018, 10(12): 536.
doi: 10.3390/toxins10120536
[76] Yang F, Huang F Y, Feng H, et al. A complete route for biodegradation of potentially carcinogenic cyanotoxin microcystin-LR in a novel indigenous bacterium. Water Research, 2020, 174: 115638.
doi: 10.1016/j.watres.2020.115638
[77] Valeria A M, Ricardo E J, Stephan P, et al. Degradation of Microcystin-RR by Sphingomonas sp. CBA4 isolated from San Roque reservoir (Córdoba-Argentina). Biodegradation, 2006, 17(5): 447-455.
doi: 10.1007/s10532-005-9015-9 pmid: 16485086
[78] Tsuji K, Asakawa M, Anzai Y, et al. Degradation of microcystins using immobilized microorganism isolated in an eutrophic lake. Chemosphere, 2006, 65(1): 117-124.
doi: 10.1016/j.chemosphere.2006.02.018
[79] Imanishi S, Kato H, Mizuno M, et al. Bacterial degradation of microcystins and nodularin. Chemical Research in Toxicology, 2005, 18(3): 591-598.
doi: 10.1021/tx049677g pmid: 15777098
[80] Somdee T, Thunders M, Ruck J, et al. Degradation of[dha(7)] MC-LR by a microcystin degrading bacterium isolated from lake rotoiti, New Zealand. ISRN Microbiology, 2013, 2013: 596429.
[81] Ishii H, Nishijima M, Abe T. Characterization of degradation process of cyanobacterial hepatotoxins by a gram-negative aerobic bacterium. Water Research, 2004, 38(11): 2667-2676.
doi: 10.1016/j.watres.2004.03.014
[82] Park H D, Sasaki Y, Maruyama T, et al. Degradation of the cyanobacterial hepatotoxin microcystin by a new bacterium isolated from a hypertrophic lake. Environmental Toxicology, 2001, 16(4): 337-343.
doi: 10.1002/tox.1041 pmid: 11501283
[83] Somdee T, Wibuloutai J, Somdee T, et al. Biodegradation of the cyanobacterial hepatotoxin[Dha7] microcystin-LR within a biologically active sand filter. Water Supply, 2014, 14(4): 672-680.
doi: 10.2166/ws.2014.024
[84] Zeng Y H, Cai Z H, Zhu J M, et al. Two hierarchical LuxR-LuxI type quorum sensing systems in Novosphingobium activate microcystin degradation through transcriptional regulation of the mlr pathway. Water Research, 2020, 183: 116092.
doi: 10.1016/j.watres.2020.116092
[85] Wang J P, Wang C, Li Q, et al. Microcystin-LR degradation and gene regulation of microcystin-degrading Novosphingobium sp. THN1 at different carbon concentrations. Frontiers in Microbiology, 2019, 10: 1750.
doi: 10.3389/fmicb.2019.01750
[86] Liu K, Ding Q, Yuan M, et al. Biodegradation of microcystin-RR by Sphingopyxis sp. and its influencing factors. Journal of Southeast University Natural Science Edition, 2021, 51(3): 496-502.
[87] Hu C L, Zuo Y X, Peng L, et al. Widespread distribution and adaptive degradation of microcystin degrader (mlr-genotype) in lake Taihu, China. Toxins, 2021, 13(12): 864.
doi: 10.3390/toxins13120864
[88] Xiao C B, Yan H, Wang J F, et al. Microcystin-LR biodegradation by Sphingopyxis sp. USTB-05. Frontiers of Environmental Science & Engineering in China, 2011, 5(4): 526-532.
[89] Okano K, Shimizu K, Kawauchi Y, et al. Characteristics of a microcystin-degrading bacterium under alkaline environmental conditions. Journal of Toxicology, 2009, 2009: 954291.
[90] Ho L, Tang T, Monis P T, et al. Biodegradation of multiple cyanobacterial metabolites in drinking water supplies. Chemosphere, 2012, 87(10): 1149-1154.
doi: 10.1016/j.chemosphere.2012.02.020
[91] Lezcano M Á, Morón-López J, Agha R, et al. Presence or absence of mlr genes and nutrient concentrations co-determine the microcystin biodegradation efficiency of a natural bacterial community. Toxins, 2016, 8(11): 318.
doi: 10.3390/toxins8110318
[92] Maghsoudi E, Fortin N, Greer C, et al. Cyanotoxin degradation activity and mlr gene expression profiles of a Sphingopyxis sp. isolated from Lake Champlain, Canada. Environmental Science Processes & Impacts, 2016, 18(11): 1417-1426.
[93] Zhang J, Lu Q Q, Ding Q, et al. A novel and native microcystin-degrading bacterium of Sphingopyxis sp. isolated from lake Taihu. International Journal of Environmental Research and Public Health, 2017, 14(10): 1187.
doi: 10.3390/ijerph14101187
[94] Qin L, Zhang X X, Chen X G, et al. Isolation of a novel microcystin-degrading bacterium and the evolutionary origin of mlr gene cluster. Toxins, 2019, 11(5): 269.
doi: 10.3390/toxins11050269
[95] Ho L, Hoefel D, Saint C P, et al. Isolation and identification of a novel microcystin-degrading bacterium from a biological sand filter. Water Research, 2007, 41(20): 4685-4695.
doi: 10.1016/j.watres.2007.06.057
[96] Jing W W, Sui G D, Liu S X. Characteristics of a microcystin-LR biodegrading bacterial isolate: Ochrobactrum sp. FDT5. Bulletin of Environmental Contamination and Toxicology, 2014, 92(1): 119-122.
doi: 10.1007/s00128-013-1170-9
[97] Zhang M L, Yan H, Pan G. Microbial degradation of microcystin-LR by Ralstonia solanacearum. Environmental Technology, 2011, 33(15-16): 1779-1787.
pmid: 22439565
[98] Yang F, Zhou Y L, Sun R L, et al. Biodegradation of microcystin-LR and-RR by a novel microcystin-degrading bacterium isolated from Lake Taihu. Biodegradation, 2014, 25(3): 447-457.
doi: 10.1007/s10532-013-9673-y pmid: 24179091
[99] Mou X Z, Lu X X, Jacob J, et al. Metagenomic identification of bacterioplankton taxa and pathways involved in microcystin degradation in lake Erie. PLoS One, 2013, 8(4): e61890.
doi: 10.1371/journal.pone.0061890
[100] Hu L B, Yang J D, Zhou W, et al. Isolation of a Methylobacillus sp. that degrades microcystin toxins associated with cyanobacteria. New Biotechnology, 2009, 26(3-4): 205-211.
doi: 10.1016/j.nbt.2009.09.001
[101] 游狄杰, 陈晓国, 向荟圯, 等. 微囊藻毒素降解菌Paucibacter sp. CH菌的分离鉴定及其降解特性. 环境科学, 2014, 35(1): 313-318.
You D J, Chen X G, Xiang H Y, et al. Isolation, identification and characterization of a microcystin-degrading bacterium Paucibacter sp. strain CH. Environmental Science, 2014, 35(1): 313-318.
[102] Lawton L A, Welgamage A, Manage P M, et al. Novel bacterial strains for the removal of microcystins from drinking water. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 2011, 63(6): 1137-1142.
doi: 10.2166/wst.2011.352
[103] Santos A A, Soldatou S, et al. Degradation of multiple peptides by microcystin-degrader Paucibacter toxinivorans (2C20). Toxins, 2021, 13(4): 265.
doi: 10.3390/toxins13040265
[104] Krishnan A, Zhang Y Q, Mou X Z. Isolation and characterization of microcystin-degrading bacteria from lake Erie. Bulletin of Environmental Contamination and Toxicology, 2018, 101(5): 617-623.
doi: 10.1007/s00128-018-2468-4 pmid: 30368574
[105] Chen J, Hu L B, Zhou W, et al. Degradation of microcystin-LR and RR by a Stenotrophomonas sp. strain EMS isolated from Lake Taihu, China. International Journal of Molecular Sciences, 2010, 11(3): 896-911.
doi: 10.3390/ijms11030896
[106] Yang F, Massey I Y, Guo J, et al. Microcystin-LR degradation utilizing a novel effective indigenous bacterial community YFMCD 1 from Lake Taihu. Journal of Toxicology and Environmental Health, Part A, 2018, 81(7): 184-193.
doi: 10.1080/15287394.2018.1423803
[107] Yang F, Zhou Y L, Yin L H, et al. Microcystin-degrading activity of an indigenous bacterial strain Stenotrophomonas acidaminiphila MC-LTH 2 isolated from Lake Taihu. PLoS One, 2014, 9(1): e86216.
doi: 10.1371/journal.pone.0086216
[108] Idroos F S, de Silva B, Manage P M. Biodegradation of microcystin analogues by Stenotrophomonas maltophilia isolated from Beira Lake Sri Lanka. Journal of the National Science Foundation of Sri Lanka, 2017, 45(2): 91.
doi: 10.4038/jnsfsr.v45i2.8175
[109] Eleuterio L, Batista J R. Biodegradation studies and sequencing of microcystin-LR degrading bacteria isolated from a drinking water biofilter and a fresh water lake. Toxicon, 2010, 55(8): 1434-1442.
doi: 10.1016/j.toxicon.2010.02.020 pmid: 20219514
[110] Krishnan A, Zhang Y Q, Balaban M, et al. Taxonomic and genotypical heterogeneity of microcystin degrading bacterioplankton in western lake Erie. Harmful Algae, 2020, 98: 101895.
doi: 10.1016/j.hal.2020.101895
[111] Lemes G A, Kist L W, Bogo M R, et al. Biodegradation of[D-Leu(1)] microcystin-LR by a bacterium isolated from sediment of Patos Lagoon Estuary, Brazil. The Journal of Venomous Animals and Toxins Including Tropical Diseases, 2015, 21: 4.
doi: 10.1186/s40409-015-0001-3
[112] Li H, Pan G. Enhanced and continued degradation of microcystins using microorganisms obtained through natural media. Journal of Microbiological Methods, 2014, 96: 73-80.
doi: 10.1016/j.mimet.2013.11.005
[113] Mankiewicz-Boczek J, Gᶏgała I, Jurczak T, et al. Bacteria homologus to Aeromonas capable of microcystin degradation. Open Life Sciences, 2015, 10(1): 119-129.
[114] Crettaz-Minaglia M, Fallico M, Aranda O, et al. Effect of temperature on microcystin-LR removal and Lysis activity on Microcystis aeruginosa (cyanobacteria) by an indigenous bacterium belonging to the genus Achromobacter. Environmental Science and Pollution Research International, 2020, 27(35): 44427-44439.
doi: 10.1007/s11356-020-09901-y
[115] Huang F Y, Feng H, Li X Y, et al. Anaerobic degradation of microcystin-LR by an indigenous bacterial Enterobacter sp. YF3. Journal of Toxicology and Environmental Health, Part A, 2019, 82(21): 1120-1128.
doi: 10.1080/15287394.2019.1699345
[116] Nybom S M K, Salminen S J, Meriluoto J A O. Removal of microcystin-LR by strains of metabolically active probiotic bacteria. FEMS Microbiology Letters, 2007, 270(1): 27-33.
doi: 10.1111/j.1574-6968.2007.00644.x
[117] Alamri S. Biodegradation of microcystin by a new Bacillus sp. isolated from a Saudi freshwater lake. African Journal of Biotechnology, 2010, 9: 6552-6559.
[118] Zhang J, Shi H, Liu A M, et al. Identification of a new microcystin-degrading bacterium isolated from Lake Chaohu, China. Bulletin of Environmental Contamination and Toxicology, 2015, 94(5): 661-666.
doi: 10.1007/s00128-015-1531-7 pmid: 25820434
[119] Alamri S A. Biodegradation of microcystin-RR by Bacillus flexus isolated from a Saudi freshwater lake. Saudi Journal of Biological Sciences, 2012, 19(4): 435-440.
doi: 10.1016/j.sjbs.2012.06.006 pmid: 23961204
[120] Boonbangkeng D, Thiemsorn W, Ruangrit K, et al. Promoting the simultaneous removal of Microcystis bloom and microcystin-RR by Bacillus sp. AK 3 immobilized on floating porous glass pellets. Journal of Applied Phycology, 2022, 34(3): 1513-1525.
doi: 10.1007/s10811-022-02701-6
[121] Shen R Y, Chen Z H, Dong X N, et al. Biodegradation kinetics of microcystins-LR crude extract by Lysinibacillus boronitolerans strain CQ5. Annals of Microbiology, 2019, 69(12): 1259-1266.
doi: 10.1007/s13213-019-01510-6
[122] Manage P M, Edwards C, Singh B K, et al. Isolation and identification of novel microcystin-degrading bacteria. Applied and Environmental Microbiology, 2009, 75(21): 6924-6928.
doi: 10.1128/AEM.01928-09
[123] Benegas G R S, Bernal S P F, de Oliveira V M, et al. Antimicrobial activity against Microcystis aeruginosa and degradation of microcystin-LR by bacteria isolated from Antarctica. Environmental Science and Pollution Research International, 2021, 28(37): 52381-52391.
doi: 10.1007/s11356-021-14458-5
[124] Jia Y, Wang C, Zhao G, et al. The possibility of using cyanobacterial bloom materials as a medium for white rot fungi. Letters in Applied Microbiology, 2012, 54(2): 96-101.
doi: 10.1111/j.1472-765X.2011.03178.x pmid: 22085336
[125] Jia Y, Du J J, Song F Q, et al. A fungus capable of degrading microcystin-lr in the algal culture of Microcystis aeruginosa PCC7806. Applied Biochemistry and Biotechnology, 2012, 166(4): 987-996.
doi: 10.1007/s12010-011-9486-6
[126] 张韫, 谢慧芳. 白腐菌S.commune降解微囊藻毒素-LR的研究. 环境污染与防治, 2012, 34(10): 56-60.
Zhang Y, Xie H F. Study on the biodegradation of microcystin-LR by white-rot fungus S.commune. Environmental Pollution & Control, 2012, 34(10): 56-60.
[127] Balsano E, Schwartz K, Esterhuizen-Londt M, et al. Toxin resistance in aquatic fungi poses environmentally friendly remediation possibilities: a study on the growth responses and biosorption potential of Mucor hiemalis EH5 against cyanobacterial toxins. Mycoses, 2015, 58: 52-53.
[128] Esterhuizen-Londt M, Hertel S, Pflugmacher S. Uptake and biotransformation of pure commercial microcystin-LR versus microcystin-LR from a natural cyanobacterial bloom extract in the aquatic fungus Mucor hiemalis. Biotechnology Letters, 2017, 39(10): 1537-1545.
doi: 10.1007/s10529-017-2378-2 pmid: 28597371
[129] Mohamed Z A, Alamri S, Hashem M, et al. Growth inhibition of Microcystis aeruginosa and adsorption of microcystin toxin by the yeast Aureobasidium pullulans, with no effect on microalgae. Environmental Science and Pollution Research International, 2020, 27(30): 38038-38046.
doi: 10.1007/s11356-020-09902-x
[130] Pflugmacher S, Wiegand C, Beattie K A, et al. Uptake, effects, and metabolism of cyanobacterial toxins in the emergent reed plant Phragmites australis (Cav.) Trin. ex steud. Environmental Toxicology and Chemistry, 2001, 20(4): 846-852.
doi: 10.1897/1551-5028(2001)020<0846:ueamoc>2.0.co;2 pmid: 11345462
[131] Pflugmacher S. Possible allelopathic effects of cyanotoxins, with reference to microcystin-LR, in aquatic ecosystems. Environmental Toxicology, 2002, 17(4): 407-413.
doi: 10.1002/tox.10071 pmid: 12203964
[132] Mitrovic S M, Allis O, Furey A, et al. Bioaccumulation and harmful effects of microcystin-LR in the aquatic plants Lemna minor and Wolffia arrhiza and the filamentous alga Chladophora fracta. Ecotoxicology and Environmental Safety, 2005, 61(3): 345-352.
doi: 10.1016/j.ecoenv.2004.11.003 pmid: 15922800
[133] Nimptsch J, Wiegand C, Pflugmacher S. Cyanobacterial toxin elimination via bioaccumulation of MC-LR in aquatic macrophytes: an application of the "Green Liver Concept". Environmental Science & Technology, 2008, 42(22): 8552-8557.
doi: 10.1021/es8010404
[134] Pflugmacher S, Wiegand C, Oberemm A, et al. Identification of an enzymatically formed glutathione conjugate of the cyanobacterial hepatotoxin microcystin-LR: the first step of detoxication. Biochimica et Biophysica Acta, 1998, 1425(3): 527-533.
doi: 10.1016/s0304-4165(98)00107-x pmid: 9838216
[135] Best J H, Pflugmacher S, Wiegand C, et al. Effects of enteric bacterial and cyanobacterial lipopolysaccharides, and of microcystin-LR, on glutathione S-transferase activities in zebra fish (Danio rerio). Aquatic Toxicology, 2002, 60(3-4): 223-231.
doi: 10.1016/s0166-445x(02)00010-3 pmid: 12200087
[136] Beattie K A, Ressler J, Wiegand C, et al. Comparative effects and metabolism of two microcystins and nodularin in the brine shrimp Artemia salina. Aquatic Toxicology, 2003, 62(3): 219-226.
doi: 10.1016/S0166-445X(02)00091-7
[137] Dai M, Xie P, Liang G D, et al. Simultaneous determination of microcystin-LR and its glutathione conjugate in fish tissues by liquid chromatography-tandem mass spectrometry. Journal of Chromatography B, 2008, 862(1-2): 43-50.
doi: 10.1016/j.jchromb.2007.10.030
[138] Isobe T, Okuhata H, Miyasaka H, et al. Detoxification of microcystin-LR in water by Portulaca oleracea cv. Journal of Bioscience and Bioengineering, 2014, 117(3): 330-332.
doi: 10.1016/j.jbiosc.2013.08.003
[139] Ou D Y, Song L R, Gan N Q, et al. Effects of microcystins on and toxin degradation by Poterioochromonas sp. Environmental Toxicology, 2005, 20(3): 373-380.
doi: 10.1002/tox.20114
[140] Zhang X, Hu H Y, Hong Y, et al. Isolation of a Poterioochromonas capable of feeding on Microcystis aeruginosa and degrading microcystin-LR. FEMS Microbiology Letters, 2008, 288(2): 241-246.
doi: 10.1111/j.1574-6968.2008.01355.x pmid: 18811657
[141] Zhang X, Hu H Y, Hong Y. Primary study on the feeding characteristics of a golden alga on Microcystis aeruginosa. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 2009, 59(9): 1727-1732.
doi: 10.2166/wst.2009.200
[142] Zhang X, Hu H Y, Men Y J, et al. The effect of Poterioochromonas abundance on production of intra- and extracellular microcystin-LR concentration. Hydrobiologia, 2010, 652(1): 237-246.
doi: 10.1007/s10750-010-0335-3
[143] Ma M Y, Wang F C, Wei C J, et al. Establishment of high-cell-density heterotrophic cultivation of Poterioochromonas malhamensis contributes to achieving biological control of Microcystis. Journal of Applied Phycology, 2022, 34(1): 423-434.
doi: 10.1007/s10811-021-02659-x
[144] Yang D, Park S. Freshwater anostracan, Branchinella kugenumaensis, as a potential controlling consumer species on toxic cyanobacteria Microcystis aeruginosa. Aquatic Ecology, 2017, 51(3): 449-461.
doi: 10.1007/s10452-017-9628-1
[145] Urrutia-Cordero P, Ekvall M K, Hansson L A. Responses of cyanobacteria to herbivorous zooplankton across predator regimes: who mows the bloom? Freshwater Biology, 2015, 60(5): 960-972.
doi: 10.1111/fwb.12555
[146] Mohamed Z A, Bakr A A, Ghramh H A. Grazing of the copepod Cyclops vicinus on toxic Microcystis aeruginosa: potential for controlling cyanobacterial blooms and transfer of toxins. Oceanological and Hydrobiological Studies, 2018, 47(3): 296-302.
doi: 10.1515/ohs-2018-0028
[147] Shams S, Cerasino L, Salmaso N, et al. Experimental models of microcystin accumulation in Daphnia magna grazing on Planktothrix rubescens: implications for water management. Aquatic Toxicology, 2014, 148: 9-15.
doi: 10.1016/j.aquatox.2013.12.020
[148] Saito T, Sugiura N, Itayama T, et al. Biodegradation of Microcystis and microcystins by indigenous nanoflagellates on biofilm in a practical treatment facility. Environmental Technology, 2003, 24(2): 143-151.
pmid: 12666784
[149] Mohamed Z A, Al-Shehri A M. Grazing on Microcystis aeruginosa and degradation of microcystins by the heterotrophic flagellate Diphylleia rotans. Ecotoxicology and Environmental Safety, 2013, 96: 48-52.
doi: 10.1016/j.ecoenv.2013.06.015
[150] 张露. 原生动物棕鞭毛虫清除有毒微囊藻的环境效应及其降解藻毒素机制的研究. 南京: 南京师范大学, 2019.
Zhang L. The environmental effects of protozoan Ochromonas on the removal of toxic microcystis and its mechanism of degrading algal toxins. Nanjing: Nanjing Normal University, 2019.
[151] Xu W J, Li X X, Li Y P, et al. Rising temperature more strongly promotes low-abundance Paramecium to remove Microcystis and degrade microcystins. Environmental Pollution, 2021, 291: 118143.
doi: 10.1016/j.envpol.2021.118143
[152] Terin U C, Sabogal-Paz L P. Microcystis aeruginosa and microcystin-LR removal by household slow sand filters operating in continuous and intermittent flows. Water Research, 2019, 150: 29-39.
doi: S0043-1354(18)30984-9 pmid: 30503872
[153] Xu W, Kong M J, Song J, et al. Performance of a granular activated carbon biologically active filter (GAC-BAF) for removing microcystin-LR (MC-LR) from eutrophic water. Journal of Water Supply: Research and Technology-Aqua, 2021, 70(1): 58-66.
doi: 10.2166/aqua.2020.032
[154] Xiang S, Han Y T, Jiang C, et al. Composite biologically active filter (BAF) with zeolite, granular activated carbon, and suspended biological carrier for treating algae-laden raw water. Journal of Water Process Engineering, 2021, 42: 102188.
doi: 10.1016/j.jwpe.2021.102188
[155] Sugiura N, Isoda H, Maekawa T. Degradation potential of musty odour in a drinking water source by a biofilm method. Journal of Water Supply: Research and Technology-Aqua, 2003, 52(3): 181-187.
doi: 10.2166/aqua.2003.0018
[156] Egashira K, Ito K, Yoshiy Y. Removal of musty odor compound in drinking water by biological filter. Water Science and Technology, 1992, 25(2): 307-314.
[157] Terauchi N, Ohtani T, Yamanaka K, et al. Studies on a biological filter for musty odor removal in drinking water treatment processes. Water Science and Technology, 1995, 31(11): 229-235.
[158] 刘春燕, 李娟英, 顾扬, 等. 木炭填料生物反应器对微囊藻毒素的去除. 环境工程学报, 2016, 10(6): 3317-3324.
Liu C Y, Li J Y, Gu Y, et al. Removing microcystin by bio-reactor formed in charcoal. Chinese Journal of Environmental Engineering, 2016, 10(6): 3317-3324.
[159] Kumar P, Pérez J A E, Cledon M, et al. Removal of microcystin-LR and other water pollutants using sand coated with bio-optimized carbon submicron particles: Graphene oxide and reduced graphene oxide. Chemical Engineering Journal, 2020, 397: 125398.
doi: 10.1016/j.cej.2020.125398
[160] Wang H X, Ho L, Lewis D M, et al. Discriminating and assessing adsorption and biodegradation removal mechanisms during granular activated carbon filtration of microcystin toxins. Water Research, 2007, 41(18): 4262-4270.
doi: 10.1016/j.watres.2007.05.057
[161] McDowall B, Ho L, Saint C, et al. Removal of geosmin and 2-methylisoborneol through biologically active sand filters. International Journal of Environment and Waste Management, 2007, 1(4): 311.
doi: 10.1504/IJEWM.2007.015685
[162] McDowall B, Hoefel D, Newcombe G, et al. Enhancing the biofiltration of geosmin by seeding sand filter columns with a consortium of geosmin-degrading bacteria. Water Research, 2009, 43(2): 433-440.
doi: 10.1016/j.watres.2008.10.044 pmid: 19010510
[163] Kumar P, Hegde K, Brar S K, et al. Co-culturing of native bacteria from drinking water treatment plant with known degraders to accelerate microcystin-LR removal using biofilter. Chemical Engineering Journal, 2020, 383: 123090.
doi: 10.1016/j.cej.2019.123090
[164] Jian Z Y, Bai Y H, Chang Y Y, et al. Removal of micropollutants and cyanobacteria from drinking water using KMnO4 pre-oxidation coupled with bioaugmentation. Chemosphere, 2019, 215: 1-7.
doi: 10.1016/j.chemosphere.2018.10.013
[165] Ravi R, Susheelamma N S. Simultaneous optimization of a multi-response system by desirability function analysis of boondi-making: a case study. Journal of Food Science, 2005, 70(8): s539-s547.
doi: 10.1111/j.1365-2621.2005.tb11531.x
[166] Chen X, Zhu H, Yan B X, et al. Greenhouse gas emissions and wastewater treatment performance by three plant species in subsurface flow constructed wetland mesocosms. Chemosphere, 2020, 239: 124795.
doi: 10.1016/j.chemosphere.2019.124795
[167] Liang Y X, Zhu H, Bañuelos G, et al. Removal of sulfamethoxazole from salt-laden wastewater in constructed wetlands affected by plant species, salinity levels and co-existing contaminants. Chemical Engineering Journal, 2018, 341: 462-470.
doi: 10.1016/j.cej.2018.02.059
[168] Wang R, Tai Y P, Wan X, et al. Enhanced removal of Microcystis bloom and microcystin-LR using microcosm constructed wetlands with bioaugmentation of degrading bacteria. Chemosphere, 2018, 210: 29-37.
doi: S0045-6535(18)31215-3 pmid: 29980069
[169] Bavithra G, Azevedo J, Oliveira F, et al. Assessment of constructed wetlands’ potential for the removal of cyanobacteria and microcystins (MC-LR). Water, 2019, 12(1): 10.
doi: 10.3390/w12010010
[170] Cheng R, Zhu H, Shutes B, et al. Treatment of microcystin (MC-LR) and nutrients in eutrophic water by constructed wetlands: performance and microbial community. Chemosphere, 2021, 263: 128139.
doi: 10.1016/j.chemosphere.2020.128139
[171] Wang Y T, Cai Z Q, Sheng S, et al. Comprehensive evaluation of substrate materials for contaminants removal in constructed wetlands. Science of the Total Environment, 2020, 701: 134736.
doi: 10.1016/j.scitotenv.2019.134736
[172] Hu S S, Zuo X T, Lv Z P, et al. Drained water quality in sludge treatment wetlands: effects of earthworm densities and plant species. Journal of Cleaner Production, 2020, 247: 119128.
doi: 10.1016/j.jclepro.2019.119128
[173] Pham T L, Utsumi M. An overview of the accumulation of microcystins in aquatic ecosystems. Journal of Environmental Management, 2018, 213: 520-529.
doi: 10.1016/j.jenvman.2018.01.077
[174] Santos F, de Almeida C M R, Ribeiro I, et al. Removal of veterinary antibiotics in constructed wetland microcosms: Response of bacterial communities. Ecotoxicology and Environmental Safety, 2019, 169: 894-901.
doi: 10.1016/j.ecoenv.2018.11.078
[175] 宋海亮, 李先宁, 吕锡武, 等. 水生植物滤床去除富营养化湖泊水中微囊藻毒素的研究. 生态环境, 2006, 15(6): 1146-1150.
Song H L, Li X N, Lu X W, et al. Removal of microcystins from eutrophic lake water by using hydrophyte filter bed eco-system. Ecology and Environment, 2006, 15(6): 1146-1150.
[176] Bao Z Y. Investigation of microcystins removal from eutrophic water by ecological floating bed at different water flow rates. Desalination and Water Treatment, 2015, 56(7): 1964-1974.
doi: 10.1080/19443994.2014.956799
[177] Kivaisi A K. The potential for constructed wetlands for wastewater treatment and reuse in developing countries: a review. Ecological Engineering, 2001, 16(4): 545-560.
doi: 10.1016/S0925-8574(00)00113-0
[178] Li X N, Song H L, Li W, et al. An integrated ecological floating-bed employing plant, freshwater clam and biofilm carrier for purification of eutrophic water. Ecological Engineering, 2010, 36(4): 382-390.
doi: 10.1016/j.ecoleng.2009.11.004
[179] 李伟, 李先宁, 曹大伟, 等. 组合生态浮床技术对富营养化水源水质的改善效果. 中国给水排水, 2008, 24(3): 34-38.
Li W, Li X N, Cao D W, et al. Effect of combined ecological floating bed technology on improvement of eutrophic source water quality. China Water & Wastewater, 2008, 24(3): 34-38.
[180] Martin K J, Nerenberg R. The membrane biofilm reactor (MBfR) for water and wastewater treatment: Principles, applications, and recent developments. Bioresource Technology, 2012, 122: 83-94.
doi: 10.1016/j.biortech.2012.02.110 pmid: 22541953
[181] Syron E, Casey E. Membrane-aerated biofilms for high rate biotreatment: performance appraisal, engineering principles, scale-up, and development requirements. Environmental Science & Technology, 2008, 42(6): 1833-1844.
doi: 10.1021/es0719428
[182] Nerenberg R. The membrane-biofilm reactor (MBfR) as a counter-diffusional biofilm process. Current Opinion in Biotechnology, 2016, 38: 131-136.
doi: 10.1016/j.copbio.2016.01.015 pmid: 26874609
[183] Morón-López J, Nieto-Reyes L, Senán-Salinas J, et al. Recycled desalination membranes as a support material for biofilm development: a new approach for microcystin removal during water treatment. Science of the Total Environment, 2019, 647: 785-793.
doi: 10.1016/j.scitotenv.2018.07.435
[184] Morón-López J, Molina S. Optimization of Recycled-Membrane Biofilm Reactor (R-MBfR) as a sustainable biological treatment for microcystins removal. Biochemical Engineering Journal, 2020, 153: 107422.
doi: 10.1016/j.bej.2019.107422
[185] 包子云, 王沛芳, 钱进, 等. 藻毒素的生物降解研究进展. 长江科学院院报, 2015, 32(5): 28-36.
Bao Z Y, Wang P F, Qian J, et al. Research progress in biodegradation of cyanobacterial toxins. Journal of Yangtze River Scientific Research Institute, 2015, 32(5): 28-36.
[186] 雷俊山, 叶闽, 余秋梅, 等. 垂直-水平流人工湿地系统除污效果研究. 人民长江, 2008, 39(23): 77-79.
Lei J S, Ye M, Yu Q M, et al. Study on decontamination effect of constructed wetland system based on vertical-flow and horizontal-flow. Yangtze River, 2008, 39(23): 77-79.
[187] 虞中杰, 王东启, 陈振楼, 等. 人工浮床加挂填料对富营养化河水的净化效果. 中国给水排水, 2011, 27(17): 31-35.
Yu Z J, Wang D Q, Chen Z L, et al. Purification of eutrophic river water in artificial floating beds combined with carriers. China Water & Wastewater, 2011, 27(17): 31-35.
[188] 杨林燕, 海热提, 李萌, 等. 碳纤维湿地式浮床对微污染水体的净化研究. 环境科学与技术, 2013, 36(11): 136-141, 180.
Yang L Y, Hai R T, Li M, et al. Purification of micro-polluted waters using vegetated floating bed made of carbon fiber. Environmental Science & Technology, 2013, 36(11): 136-141, 180.
[189] 张荣. 低温下强化水芹浮床对农村污水的深度处理研究. 环境科学与管理, 2015, 40(3): 86-89.
Zhang R. Study on deep treatment of rural domestic sewage with enhanced Oenanthe javanica floating raft under low water temperature. Environmental Science and Management, 2015, 40(3): 86-89.
[190] 辛在军, 李秀珍, 闫中正, 等. 冬季不同刈割水芹浮床连续净化过程及效果. 生态学杂志, 2011, 30(12): 2745-2752.
Xin Z J, Li X Z, Yan Z Z, et al. Purification effects of different stubble height Oenanthe javanica(Blume) DC floating bed systems in winter in two successive experimental periods. Chinese Journal of Ecology, 2011, 30(12): 2745-2752.
[1] 郑玉荣,靳军宝,吴新年,白光祖,刘秋燕. 基于多数据源的纤维素生物降解颠覆性技术研究 *[J]. 中国生物工程杂志, 2018, 38(5): 92-103.
[2] 胡春辉, 徐青, 于浩. Arthrobacter sp.2PR降解2-羟基吡啶动力学及降解特性研究[J]. 中国生物工程杂志, 2017, 37(8): 31-38.
[3] 郭晓青, 王秀娟, 孙爱丽, 李德祥, 史西志. 环境中拟除虫菊酯类农药微生物降解技术研究进展[J]. 中国生物工程杂志, 2017, 37(5): 126-132.
[4] 司美茹 苏涛 杨革. 一株高效广谱染料降解细菌的分离鉴定及脱色特性研究[J]. 中国生物工程杂志, 2010, 30(06): 70-76.
[5] 王艳 辛嘉英. 生物降解萘的研究进展[J]. 中国生物工程杂志, 2009, 29(09): 0-0.
[6] 赵林果,金耀光,李强,徐柏生. 白腐菌及黑曲霉所产的纤维素复合酶对稻草秸秆的生物降解[J]. 中国生物工程杂志, 2007, 27(3): 71-75.
[7] 袁勇军,陆兆新,别小妹,吕凤霞. DN2菌降解烟碱的动力学及其应用研究[J]. 中国生物工程杂志, 2006, 26(03): 47-50.
[8] 钱丽丽,汪钊. 脂肪酶在生物降解性聚酯合成中的应用[J]. 中国生物工程杂志, 2006, 26(0): 260-265.
[9] 李力, 于波, 许平. 双液相系统中疏水化合物的微生物降解[J]. 中国生物工程杂志, 2005, 25(S1): 107-111.
[10] 董丽娟, 雷武, 夏明珠, 王风云. 聚乙烯醇的生物降解[J]. 中国生物工程杂志, 2005, 25(7): 28-33.
[11] 程守强, 梁凤来, 顾晓波, 刘如林. 烷烃降解基因alk研究进展[J]. 中国生物工程杂志, 2004, 24(3): 30-34.
[12] 郁红艳, 曾光明, 胡天觉, 陈耀宁. 真菌降解木质素研究进展及在好氧堆肥中的研究展望[J]. 中国生物工程杂志, 2003, 23(10): 57-61.
[13] 段新源, 王蔚, 卢雪梅, 高培基. 多种小分子物质在木素降解中的作用研究进展[J]. 中国生物工程杂志, 2003, 23(1): 51-56.
[14] 孙艳, 钱世钧. 芳香族化合物生物降解的研究进展[J]. 中国生物工程杂志, 2001, 21(1): 42-46.
[15] . 环境生物技术[J]. 中国生物工程杂志, 1998, 18(S1): 18-28.