Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (4): 1-8    DOI: 10.13523/j.cb.2112026
研究报告     
脑血管内皮细胞敲除Prmt5导致脑血管损伤及星形胶质细胞活化*
宁慧敏1,2,张一哲2,韩钰莹2,张翀2,宋晓朋2,梁爽2,杨晓1,2,**(),王俊2,**()
1 青岛大学基础医学院 青岛 266071
2 军事科学院军事医学研究院生命组学研究所 蛋白质组学国家重点实验室 北京 102206
Deletion of Prmt5 in Cerebral Endothelial Cells Leads to Cerebrovascular Disease and Astrocyte Activation
NING Hui-min1,2,ZHANG Yi-zhe2,HAN Yu-ying2,ZHANG Chong2,SONG Xiao-peng2,LIANG Shuang2,YANG Xiao1,2,**(),WANG Jun2,**()
1 School of Basic Medicine, Qingdao University, Qingdao 266071, China
2 State Key Laboratory of Proteomics, Beijing National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
 全文: PDF(3857 KB)   HTML
摘要:

目的: 研究蛋白质精氨酸甲基转移酶5(protein arginine methyltransferase 5,Prmt5)在小鼠脑血管发育、稳态维持中的功能,并考察脑血管内皮细胞特异性敲除Prmt5后对中枢神经系统的影响。方法: 利用脑血管内皮细胞特异性表达SP-A-Cre转基因小鼠和Prmt5条件基因打靶小鼠交配,构建脑血管内皮细胞特异性Prmt5敲除小鼠。利用H-E染色、免疫荧光染色、激光散斑成像、Sulfo-NHS-Biotin染料灌注等方法评价脑血管内皮细胞特异性Prmt5敲除小鼠脑血管结构、脑血流量、血脑屏障渗透性等;利用实时定量PCR进一步检测补体C1q(complement C1q,C1q)、肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)和白细胞介素-1β(interleukin 1β,IL-1β)等细胞因子的表达水平。通过免疫荧光、Western blot等检测胶质纤维酸性蛋白(glial fibrillary acidic protein,GFAP)、S100钙结合蛋白β(S100 calcium-binding protein β protein,S100β)和补体C3(complement C3,C3)的表达,检测小鼠皮层、丘脑和小脑中星形胶质细胞活化水平。结果: 脑血管内皮细胞特异性敲除Prmt5导致血管损伤, C1q、TNF-α和IL-1β等炎症因子表达水平上调,活化星形胶质细胞比例明显增加。结论: 脑血管内皮细胞中Prmt5在小鼠脑血管稳态维持中发挥了重要功能。

关键词: 脑血管内皮细胞Prmt5星形胶质细胞    
Abstract:

Objective: To study the role of protein arginine methyltransferase 5 (Prmt5) in cerebral vascular development and homeostasis maintenance in mice, and to investigate the effect of Prmt5 specific knockout on the central nervous system. Methods: We crossed Prmt5fl/fl mice with SP-A Cre transgenic mice that express Cre recombinase in cerebrovascular endothelial to generate cerebrovascular endothelial cell-specific Prmt5 knockout mice. H-E staining and immunostaining were performed to observe the vascular structures of control and Prmt5fl/fl mutant mice. Laser speckle contrast imaging was used to detect cerebral blood flow in control and mutant mice. Sulfo-NHS-Biotin was intraperitoneally injected into control and mutant mice to examine the blood brain barrier(BBB) integrity. The expression levels of astrocyte glial fibrillary acidic protein (GFAP), S100 calcium-binding protein β (S100β), complement C3 (C3), C1q, tumor necrosis factor alpha(TNF-α) and Interleukin-1 beta(IL-1β) were detected by immunofluorescence and Western blot to evaluate the activation level of astrocytes in cortex, thalamus and cerebellum of knockout mice and control mice. Furthermore, activators of astrocytes, such as C1q, TNF-α, IL-1β and other cytokines, were also detected by real-time PCR. Results: We found that cerebrovascular endothelial cell-specific Prmt5 knockout mice exhibited aberrant cerebrovascular structure, and increased the number of reactive astrocytes. The expression levels of TNF-α and IL-1β in the whole brain, as well as the C1q, TNF-α and IL-1β, were all increased in Prmt5fl/fl mutant mice. Conclusion: Prmt5 plays an essential role in the maintenance of cerebrovascular homeostasis, suggesting that it might act as a potential therapeutic target for cerebrovascular diseases.

Key words: Cerebrovascular endothelial cell    Prmt5    Astrocyte
收稿日期: 2021-12-08 出版日期: 2022-05-05
ZTFLH:  Q819  
基金资助: * 国家自然科学基金重点项目(82030011)
通讯作者: 杨晓,王俊     E-mail: yangx@bmi.ac.cn;wangjun1@bmi.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
宁慧敏
张一哲
韩钰莹
张翀
宋晓朋
梁爽
杨晓
王俊

引用本文:

宁慧敏, 张一哲, 韩钰莹, 张翀, 宋晓朋, 梁爽, 杨晓, 王俊. 脑血管内皮细胞敲除Prmt5导致脑血管损伤及星形胶质细胞活化*[J]. 中国生物工程杂志, 2022, 42(4): 1-8.

NING Hui-min, ZHANGYi-zhe, HAN Yu-ying, ZHANG Chong, SONG Xiao-peng, LIANG Shuang, YANG Xiao, WANG Jun . Deletion of Prmt5 in Cerebral Endothelial Cells Leads to Cerebrovascular Disease and Astrocyte Activation. China Biotechnology, 2022, 42(4): 1-8.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2112026        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I4/1

Name Sequence(5'-3')
GAPDH TGCCCAGAACATCATCCCT
GAPDH GGTCCTCAGTGTAGCCCAAG
IL-1β TCGCAGCAGCACATCAACAAGAG
IL-1β TGCTCATGTCCTCATCCTGGAAGG
TNF-α AGCAAACCACCAAGTGGAGGA
TNF-α GCTGGCACCACTAGTTGGTT
PRMT5 CTGAATTGCGTCCCCGAAATA
PRMT5 AGGTTCCTGAATGAACTCCCT
C1qa GTGGCTGAAGATGTCTGCCGAG
C1qa TTAAAACCTCGGATACCAGTCCG
C1qb CAACCAGGCACTCCAGGGATAA
C1qb CCAACTTTGCCTGGAGTCCCAG
C1qc AAGGACGGGCATGATGGACTCC
C1qc TTTCCCACGGTGGCCAGGCAT
表1  实时定量PCR引物序列
图1  脑血管内皮特异性敲除Prmt5导致脑血管损伤
图2  脑血管内皮细胞敲除Prmt5导致炎症因子表达水平增加
图3  Prmt5敲除小鼠脑组织中星形胶质细胞激活
[1] Sweeney M D, Zhao Z, Montagne A, et al. Blood-brain barrier: from physiology to disease and back. Physiological Reviews, 2019, 99(1): 21-78.
doi: 10.1152/physrev.00050.2017
[2] Bernstein D L, Gajghate S, Reichenbach N L, et al. Let-7g counteracts endothelial dysfunction and ameliorating neurological functions in mouse ischemia/reperfusion stroke model. Brain, Behavior, and Immunity, 2020, 87: 543-555.
doi: S0889-1591(19)31341-8 pmid: 32017988
[3] Zhao Z, Nelson A R, Betsholtz C, et al. Establishment and dysfunction of the blood-brain barrier. Cell, 2015, 163(5): 1064-1078.
doi: 10.1016/j.cell.2015.10.067
[4] Blanc R S, Richard S. Arginine methylation: the coming of age. Molecular Cell, 2017, 65(1): 8-24.
doi: 10.1016/j.molcel.2016.11.003
[5] Hamard P J, Santiago G E, Liu F, et al. PRMT5 regulates DNA repair by controlling the alternative splicing of histone-modifying enzymes. Cell Reports, 2018, 24(10): 2643-2657.
doi: 10.1016/j.celrep.2018.08.002
[6] Webb L M, Sengupta S, Edell C, et al. Protein arginine methyltransferase 5 promotes cholesterol biosynthesis-mediated Th17 responses and autoimmunity. The Journal of Clinical Investigation, 2020, 130(4): 1683-1698.
doi: 10.1172/JCI131254
[7] Zhang T, Günther S, Looso M, et al. Prmt5 is a regulator of muscle stem cell expansion in adult mice. Nature Communications, 2015, 6: 7140.
doi: 10.1038/ncomms8140 pmid: 26028225
[8] Liu M, Yao B, Gui T, et al. PRMT5-dependent transcriptional repression of c-Myc target genes promotes gastric cancer progression. Theranostics, 2020, 10(10): 4437-4452.
doi: 10.7150/thno.42047
[9] Meng F W, Shi L, Cheng X, et al. Surfactant protein A promoter directs the expression of Cre recombinase in brain microvascular endothelial cells of transgenic mice. Matrix Biology, 2007, 26(1): 54-57.
doi: 10.1016/j.matbio.2006.09.003
[10] Li Z H, Xu J P, Song Y, et al. PRMT5 prevents dilated cardiomyopathy via suppression of protein O-GlcNAcylation. Circulation Research, 2021, 129(9): 857-871.
doi: 10.1161/CIRCRESAHA.121.319456
[11] Grammas P, Ovase R. Inflammatory factors are elevated in brain microvessels in Alzheimer’s disease. Neurobiology of Aging, 2001, 22(6): 837-842.
pmid: 11754990
[12] Grammas P, Samany P G, Thirumangalakudi L. Thrombin and inflammatory proteins are elevated in Alzheimer’s disease microvessels: implications for disease pathogenesis. Journal of Alzheimer’s Disease: JAD, 2006, 9(1): 51-58.
[13] Liddelow S A, Guttenplan K A, Clarke L E, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017, 541(7638): 481-487.
doi: 10.1038/nature21029
[14] King A, Szekely B, Calapkulu E, et al. The increased densities, but different distributions, of both C3 and S100A10 immunopositive astrocyte-like cells in Alzheimer’s disease brains suggest possible roles for both A1 and A2 astrocytes in the disease pathogenesis. Brain Sciences, 2020, 10(8): 503.
doi: 10.3390/brainsci10080503
[15] Grammas P, Martinez J, Sanchez A, et al. A new paradigm for the treatment of Alzheimer’s disease: targeting vascular activation. Journal of Alzheimer’s Disease: JAD, 2014, 40(3): 619-630.
[16] Zamanian J L, Xu L, Foo L C, et al. Genomic analysis of reactive astrogliosis. The Journal of Neuroscience, 2012, 32(18): 6391-6410.
doi: 10.1523/JNEUROSCI.6221-11.2012
[17] Stogsdill J A, Ramirez J, Liu D, et al. Astrocytic neuroligins control astrocyte morphogenesis and synaptogenesis. Nature, 2017, 551(7679): 192-197.
doi: 10.1038/nature24638
[18] Jaudon F, Chiacchiaretta M, Albini M, et al. Kidins220/arms controls astrocyte calcium signaling and neuron-astrocyte communication. Cell Death and Differentiation, 2020, 27(5): 1505-1519.
doi: 10.1038/s41418-019-0431-5 pmid: 31624352
[19] Sofroniew M V, Vinters H V. Astrocytes: biology and pathology. Acta Neuropathologica, 2010, 119(1): 7-35.
doi: 10.1007/s00401-009-0619-8 pmid: 20012068
[20] Yang J H, Vitery M D C, Chen J N, et al. Glutamate-releasing SWELL1 channel in astrocytes modulates synaptic transmission and promotes brain damage in stroke. Neuron, 2019, 102(4): 813-827.e6.
doi: 10.1016/j.neuron.2019.03.029
[21] Díaz-García C M, Mongeon R, Lahmann C, et al. Neuronal stimulation triggers neuronal glycolysis and not lactate uptake. Cell Metabolism, 2017, 26(2): 361-374.e4.
doi: S1550-4131(17)30421-7 pmid: 28768175
[1] 盛玉瑞,李斌,王斌,左娣,马琳,任晓璠,郭乐,刘昆梅. 利用CRISPR/Cas9技术构建AEG-1基因敲除U251细胞系并探讨其转移行为的特点 *[J]. 中国生物工程杂志, 2018, 38(10): 38-47.
[2] 苏玉金 曹倩 鲁玲玲 孙晓红 高华 赵莎莎 杨慧. Nrf3通路参与星形胶质细胞对抗鱼藤酮毒性的保护作用[J]. 中国生物工程杂志, 2010, 30(01): 19-24.