Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (11): 10-20    DOI: 10.13523/j.cb.2008128
研究报告     
海马皮质特异性敲除AEG-1基因小鼠的构建及其行为学初步研究*
于春洋1,张春1,郭乐3,万盼盼1,黄越4,王峰1,5**(),刘昆梅1,2**()
1 宁夏医科大学宁夏颅脑疾病重点实验室 银川 750004
2 宁夏回族自治区医学科学研究所 银川 750004
3 宁夏医科大学宁夏临床医学院 银川 750004
4 宁夏医科大学药学院 银川 750004
5 宁夏医科大学总医院神经外科 银川 750004
Construction of Hippocampal Cortical Specific Knockout AEG-1 Gene Mice and Preliminary Study on Its Behavior
YU Chun-yang1,ZHANG Chun1,GUO Le3,WAN Pan-pan1,HUANG Yue4,WANG Feng1,5**(),LIU Kun-mei1,2**()
1 Ningxia Key Laboratory of Cerebrocranial Diseases, Yinchuan 750004, China
2 Medical Science Research Institution of Ningxia Hui Autonomous Region, Yinchuan 750004, China
3 Clinical Medical College of Ningxia Medical University, Yinchuan 750004, China
4 School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
5 Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan 750004, China
 全文: PDF(26259 KB)   HTML
摘要:

星形胶质细胞上调基因-1(astrocyte upregulating gene-1,AEG-1)是HIV伴随老年痴呆患者脑组织中发现的星形胶质细胞上调基因之一,近年来研究表明其调控多种中枢神经系统疾病,但其在学习认知上的研究尚未见报道。海马和皮质在学习认知中起重要作用,利用CRISPR/Cas9技术结合Cre/loxp系统构建海马皮质特异性AEG-1敲除小鼠,在此模型鼠的基础上对AEG-1和学习认知的相关性进行初步研究。首先构建插入loxp位点的flox纯合型AEG-1fl/fl小鼠,与海马、新皮层特异性表达Cre+/+重组酶的工具鼠进行繁育,利用PCR技术筛选出子代基因型为AEG-1fl/fl Cre+的海马皮质特异性AEG-1敲除小鼠;然后利用Western blot技术和免疫荧光技术检测AEG-1基因在小鼠海马皮质中的敲除效率;最后应用新物体识别箱和三腔社会互动箱并结合SMART 3.0分析系统,对海马皮质特异性AEG-1敲除小鼠的学习记忆和社会交互行为学进行初步评价。结果显示:成功获得子代基因型为AEG-1fl/fl Cre+的基因敲除小鼠;AEG-1条件性敲除小鼠海马和皮质中AEG-1蛋白质表达水平较对照组显著降低;新物体识别结果表明AEG-1条件性敲除小鼠的区分系数明显低于对照组,表明AEG-1条件性敲除小鼠的学习记忆能力较弱,但是三腔交互结果表明AEG-1条件性敲除小鼠在社会交互上与对照组相比无明显差异。以上结果为AEG-1在学习认知方面的进一步研究奠定了基础。

关键词: AEG-1Cre/loxp系统条件性敲除学习认知    
Abstract:

Astrocyte upregulating gene-1 (AEG-1) is one of found in the brain tissue of HIV patients with dementia. In recent years, studies have shown that AEG-1 regulates a variety of central nervous system diseases, but its study on learning and cognition has not been reported. Hippocampus and cortex play an important role in learning and cognition. In this paper, CRISPR/Cas9 technology combined with Cre/loxp system was used to construct hippocampal cortex specific AEG-1 knockout mice, and the correlation between AEG-1 and learning cognition was preliminarily studied on the basis of this model mouse. Firstly, flox homozygous AEG-1fl/fl mice inserted into the loxp site were constructed, and bred with hippocampal cortex specific Cre+/+ recombinase expressing tool mice. Secondly, hippocampal cortex specific AEG-1 knockout mice with AEG-1 fl/fl Cre+ were selected by PCR. Thirdly,Western blot and immunofluorescence were used to detect the knockout efficiency of AEG-1 gene in the hippocampus and cortex. Last but not least, the new object recognition box and 3-chambered social interaction box combined with SMART 3.0 analysis system were used to preliminarily evaluate the learning memory and social interaction behavior of hippocampal cortico-specific AEG-1 knockout mice. Results: The knockout mice with AEG-1 fl/fl Cre+ were successfully obtained.AEG-1 protein expression in hippocampus and cortex of mice was significantly lower than that in control group. The new object recognition results showed that the discriminant coefficient of AEG-1 knockout mice was significantly lower than that of the control group, indicating that the learning and memory ability of AEG-1 knockout mice was weak. However, the social interaction showed that there was no significant difference in social interaction between AEG-1 knockout mice and the control group. These results lay the foundation for future studies on AEG-1 in learning cognition.

Key words: AEG-1    Cre/loxp system    Conditional knockout    Learning and cognition
收稿日期: 2020-08-20 出版日期: 2020-12-11
ZTFLH:  Q819  
基金资助: * 国家自然科学基金(31660267);宁夏自然科学基金(2018AAC02018);宁夏青年科技人才托举工程(TJGC2018033)
通讯作者: 王峰,刘昆梅     E-mail: nxwwang@163.com;lkm198507@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
于春洋
张春
郭乐
万盼盼
黄越
王峰
刘昆梅

引用本文:

于春洋,张春,郭乐,万盼盼,黄越,王峰,刘昆梅. 海马皮质特异性敲除AEG-1基因小鼠的构建及其行为学初步研究*[J]. 中国生物工程杂志, 2020, 40(11): 10-20.

YU Chun-yang,ZHANG Chun,GUO Le,WAN Pan-pan,HUANG Yue,WANG Feng,LIU Kun-mei. Construction of Hippocampal Cortical Specific Knockout AEG-1 Gene Mice and Preliminary Study on Its Behavior. China Biotechnology, 2020, 40(11): 10-20.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2008128        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I11/10

图1  AEG-1flox小鼠构建策略
图2  AEG-1flox小鼠引物设计图
序号 引物名称 引物序列 GC(%) Tm 条带大小 引物说明
1 200244-Mtdh-ssDNA-5wt-tF1 GCAGACACTGGCTCTCAAATATATCC 46.2 56.5 fl/fl=570bp
fl/wt=
570/471bp
5'初筛,跨5'loxp位点的两端,检测wt;可用于纯合子鉴定
200244-Mtdh-ssDNA-5wt-tR1 TCTTCATAACTGATCTGCATTTGGC 40 56.4
2 200244-Mtdh-ssDNA-D5-5tF1 ACTAGGTTTCAGACAAGATTAGCCATG 40.7 55.5 fl=527bp
ft=none
D5-5
common_En2-R CCAACTGACCTTGGGCAAGAACAT 50 60.1
3 ZMK2F4 GCATCGCATTGTCTGAGTAGGTG 52.2 60.1 fl=534bp
wt=none
D5-3
200244-Mtdh-ssDNA-D5-3tF1 CATGGAGTTCAGGTGCTAATACCAT 44.0 55.3
4 200244-Mtdh-ssDNA-D3-5tF1 GGTTGGAATTGACCTACAAAGTGC 45.8 55.7 fl=514bp
wt=none
D3-5
LAR3 CACAACGGGTTCTTCTGTTAGTCC 50.0 55.8
5 Neo-3F TCTGAGGCGGAAAGAACCAG 55.0 54.3 fl=499bp
wt=none
D3-3
200244-Mtdh-ssDNA-D3-3tR1 AGTTAGCTCAACTCTGAGGCCACA 50.0 56.2
表1  AEG-1 flox小鼠基因鉴定引物信息
图3  AEG-1fl/flCre+繁育流程图
序号 引物名称 引物序列 GC(%) Tm 条带大小 引物说明
1 200244-Mtdh-ssDNA-5wt-tF1 GCAGACACTGGCTCTCAAATATATCC 46.2 56.5 fl/fl=570bp
fl/wt=570/471bp
鉴定是否纯合
200244-Mtdh-ssDNA-5wt-tR1 TCTTCATAACTGATCTGCATTTGGC 40 56.4
2 Neo-3F
200244-Mtdh-ssDNA-D3-3tR1
TCTGAGGCGGAAAGAACCAG
AGTTAGCTCAACTCTGAGGCCACA
55.0 54.3 fl=499bp
wt=none
null=none
鉴定3'loxp
50.0 56.2
3 Cre-up GCCTGCATTACCGGTCGATGC 50.0 54.6 T:481bp 鉴定Emx1 -CRE
Cre-low CAGGGTGTTATAAGCAATCCC 53.0 55.0
表2  AEG-1fl/wtCre+小鼠基因鉴定引物信息
图4  新物体识别行为学测试模式图
图5  三腔交互行为学测试模式图
图6  基因型为AEG-1fl/wt小鼠的PCR鉴定结果
图7  基因型为AEG-1fl/flCre+小鼠的PCR鉴定结果
图8  Western blot检测AEG-1在海马和皮质区的蛋白质表达水平
图9  免疫荧光检测AEG-1在海马区和皮质区的表达
图10  新物体识别检测AEG-1 KO小鼠的学习认知能力
图11  三腔交互检测AEG-1 KO小鼠社交能力
[1] Emdad L, Das S K, Hu B, et al. AEG-1/MTDH/LYRIC: A promiscuous protein partner critical in cancer, obesity, and CNS diseases. Adv Cancer Res, 2016,131:97-132.
doi: 10.1016/bs.acr.2016.05.002 pmid: 27451125
[2] Lee S G, Kang D C, Desalle R, et al. AEG-1/MTDH/LYRIC, the beginning: initial cloning, structure, expression profile, and regulation of expression. Adv Cancer Res, 2013,120:1-38.
pmid: 23889986
[3] Su Z Z, Chen Y, Kang D C, et al. Customized rapid subtraction hybridization (RaSH) gene microarrays identify overlapping expression changes in human fetal astrocytes resulting from human immunodeficiency virus-1 infection or tumor necrosis factor-alpha treatment. Gene, 2003,306:67-78.
doi: 10.1016/s0378-1119(03)00404-9 pmid: 12657468
[4] Carnemolla A, Fossale E, Agostoni E, et al. Rrs1 is involved in endoplasmic reticulum stress response in Huntington disease. J Biol Chem, 2009,284(27):18167-18173.
doi: 10.1074/jbc.M109.018325 pmid: 19433866
[5] Roussel B D, Kruppa A J, Miranda E, et al. Endoplasmic reticulum dysfunction in neurological disease. Lancet Neurol, 2013,12(1):105-118.
doi: 10.1016/S1474-4422(12)70238-7 pmid: 23237905
[6] Fricker M, Hollinshead M, White N, et al. Interphase nuclei of many mammalian cell types contain deep, dynamic, tubular membrane-bound invaginations of the nuclear envelope. J Cell Biol, 1997,136(3):531-544.
doi: 10.1083/jcb.136.3.531 pmid: 9024685
[7] Anttila V, Stefansson H, Kallela M, et al. Genome-wide association study of migraine implicates a common susceptibility variant on 8q22.1. Nat Genet, 2010,42(10):869-873.
doi: 10.1038/ng.652 pmid: 20802479
[8] Kang D C, Su Z Z, Sarkar D, et al. Cloning and characterization of HIV-1-inducible astrocyte elevated gene-1, AEG-1. Gene, 2005,353(1):8-15.
doi: 10.1016/j.gene.2005.04.006 pmid: 15927426
[9] Ligthart L, de Vries B, Smith A V, et al. Meta-analysis of genome-wide association for migraine in six population-based European cohorts. Eur J Hum Genet, 2011,19(8):901-907.
doi: 10.1038/ejhg.2011.48 pmid: 21448238
[10] Antunes M S, Goes A T, Boeira S P, et al. Protective effect of hesperidin in a model of Parkinson’s disease induced by 6-hydroxydopamine in aged mice. Nutrition, 2014,30(11-12):1415-1422.
pmid: 25280422
[11] Cantarella G, Di Benedetto G, Puzzo D, et al. Neutralization of TNFSF10 ameliorates functional outcome in a murine model of Alzheimer’s disease. Brain, 2015,138(Pt 1):203-216.
doi: 10.1093/brain/awu318 pmid: 25472798
[12] Sharma S, Haselton J, Rakoczy S, et al. Spatial memory is enhanced in long-living Ames dwarf mice and maintained following kainic acid induced neurodegeneration. Mech Ageing Dev, 2010,131(6):422-435.
doi: 10.1016/j.mad.2010.06.004 pmid: 20561541
[13] Anttila V, Wessman M, Kallela M, et al. Towards an understanding of genetic predisposition to migraine. Genome Med, 2011,3(3):17.
doi: 10.1186/gm231 pmid: 21457514
[14] Sharma S, Rakoczy S, Brown-Borg H. Assessment of spatial memory in mice. Life Sci, 2010,87(17-18):521-536.
doi: 10.1016/j.lfs.2010.09.004 pmid: 20837032
[15] Ghafouri M, Amini S, Khalili K, et al. HIV-1 associated dementia: symptoms and causes. Retrovirology, 2006,3:28.
doi: 10.1186/1742-4690-3-28 pmid: 16712719
[16] Mcarthur J C, Steiner J, Sacktor N, et al. Human immunodeficiency virus-associated neurocognitive disorders: Mind the gap. Ann Neurol, 2010,67(6):699-714.
doi: 10.1002/ana.22053 pmid: 20517932
[17] Volterra A, Meldolesi J. Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci, 2005,6(8):626-640.
doi: 10.1038/nrn1722 pmid: 16025096
[18] Pereira A J, Furlan F A. Astrocytes and human cognition: modeling information integration and modulation of neuronal activity. Prog Neurobiol, 2010,92(3):405-420.
[19] Laurent C, Buee L, Blum D. Tau and neuroinflammation: What impact for Alzheimer’s disease and tauopathies. Biomed J, 2018,41(1):21-33.
pmid: 29673549
[20] Spangenberg E E, Lee R J, Najafi A R, et al. Eliminating microglia in Alzheimer’s mice prevents neuronal loss without modulating amyloid-beta pathology. Brain, 2016,139(Pt 4):1265-1281.
doi: 10.1093/brain/aww016 pmid: 26921617
[21] Chun H, Lee C J. Reactive astrocytes in Alzheimer’s disease: A double-edged sword. Neurosci Res, 2018,126:44-52.
pmid: 29225140
[22] Su Z Z, Kang D C, Chen Y, et al. Identification and cloning of human astrocyte genes displaying elevated expression after infection with HIV-1 or exposure to HIV-1 envelope glycoprotein by rapid subtraction hybridization, RaSH. Oncogene, 2002,21(22):3592-3602.
doi: 10.1038/sj.onc.1205445 pmid: 12032861
[23] Lee S G, Kang D C, Desalle R, et al. AEG-1/MTDH/LYRIC, the beginning: initial cloning, structure, expression profile, and regulation of expression. Adv Cancer Res, 2013,120:1-38.
doi: 10.1016/B978-0-12-401676-7.00001-2 pmid: 23889986
[24] Brambilla L, Martorana F, Rossi D. Astrocyte signaling and neurodegeneration: new insights into CNS disorders. Prion, 2013,7(1):28-36.
doi: 10.4161/pri.22512 pmid: 23093800
[25] Ricci G, Volpi L, Pasquali L, et al. Astrocyte-neuron interactions in neurological disorders. J Biol Phys, 2009,35(4):317-336.
doi: 10.1007/s10867-009-9157-9
[26] Vartak-Sharma N, Ghorpade A. Astrocyte elevated gene-1 regulates astrocyte responses to neural injury: implications for reactive astrogliosis and neurodegeneration. J Neuroinflammation, 2012,9:195.
doi: 10.1186/1742-2094-9-195 pmid: 22884085
[27] Farhy-Tselnicker I, Allen N J. Astrocytes, neurons, synapses: a tripartite view on cortical circuit development. Neural Dev, 2018,13(1):7.
doi: 10.1186/s13064-018-0104-y pmid: 29712572
[28] Liu Z, Chopp M. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog Neurobiol, 2016,144:103-120.
doi: 10.1016/j.pneurobio.2015.09.008 pmid: 26455456
[1] 郭超婧,朱琼,张新,李磊,张令强. 去泛素化酶OTUB1肝脏特异性基因敲除小鼠模型的构建与表型分析 *[J]. 中国生物工程杂志, 2019, 39(5): 80-87.