Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (10): 86-93    DOI: 10.13523/j.cb.20161012
综述     
内皮祖细胞的生物学特性及其临床应用前景
汤文燕1,2, 栾佐1
1 中国人民解放军海军总医院 北京 100048;
2 南方医科大学第三临床医学院 广州 510515
Biological Characteristics and Clinical Application of Endothelial Progenitor Cells
TANG Wen-yan1,2, LUAN Zuo1
1. Navy General Hospital of People's Liberation Army, Beijing 100048, China;
2. The Third Clinical College of Southern Medical University, Guangzhou 510515, China
 全文: PDF(464 KB)   HTML
摘要:

内皮祖细胞(Endothelial Progenitor Cells,EPCs)是内皮细胞(endothelial cells,ECs)的前体细胞,即能分化为成熟ECs的祖细胞,它在血管内皮再生中发挥着重要作用。随着EPCs研究的深入,其在临床诊断、预后判断和各种缺血性疾病的治疗方面将会有广阔的应用前景。然而,关于EPCs的定义、来源、表面标记以及培养鉴定方法目前仍存在争议。

关键词: 内皮祖细胞血管新生临床应用前景    
Abstract:

Endothelial progenitor cells are precursor cells of endothelial cell,it can differentiate into mature endothelial cells and play an important role in vascular endothelial regeneration. According to the recent researches on endothelial progenitor cells, it has wide application prospect in clinical diagnosis, prognosis judgement and treatment of ischemic diseases. However, there is still controversy about standardized criteria and consensus for defining, characterizing, and identifying EPCs.

Key words: Angiogenesis    Endothelial progenitor cells    Clinical application prospect
收稿日期: 2016-04-13 出版日期: 2016-10-25
ZTFLH:  Q819  
通讯作者: 栾佐,电子信箱:luanzuo@aliyun.com     E-mail: luanzuo@aliyun.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

汤文燕, 栾佐. 内皮祖细胞的生物学特性及其临床应用前景[J]. 中国生物工程杂志, 2016, 36(10): 86-93.

TANG Wen-yan, LUAN Zuo. Biological Characteristics and Clinical Application of Endothelial Progenitor Cells. China Biotechnology, 2016, 36(10): 86-93.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20161012        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I10/86

[1] Asahara T,Murohara T,Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science, 1997,275(80):964-966.
[2] Hur J, Yoon C H, Kim H S, et al. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004,24(2):288-293.
[3] Cheng C C,Chang S J,Chueh Y N, et al. Distinct angiogenesis roles and surface markers of early and late endothelial progenitor cells revealed by functional group analyses. BMC Genomics, 2013, 182(14):1-10.
[4] Sieveking D P, Buckle A, Celermajer D S,et al. Strikingly different angiogenic properties of endothelial progenitor cell subpopulations. Journal of the American College of Cardiology, 2008,51(6):660-668.
[5] Minami Y, Nakajima T, Ikutomi M,et al. Angiogenic potential of early and late outgrowth endothelial progenitor cells is dependent on the time of emergence. International Journal of Cardiology, 2015,186(2015):305-314.
[6] Peichev M, Naiyer A J, Pereira D, et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood, 2000,95(3):952-958.
[7] Case J, Mead L E, Bessler W K, et al.Human CD34+AC133+VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Experimental Hematology, 2007,35(7):1109-1118.
[8] Cheng S, Chang S, Tsai T, et al. Differential expression of distinct surface markers in early endothelial progenitor cells and monocyte-derived macrophages. Gene Expression, 2013,16(1):15-24.
[9] Medina R J, O’Neill C L,Sweeney M,et al. Molecular analysis of endothelial progenitor cell (EPC) subtypes reveals two distinct cell populations with different identities. BMC Med Genomics, 2010,18(3):1-13.
[10] Sun Y, Bai W,Wang B,et al. Period 2 is essential to maintain early endothelial progenitor cell function in vitro and angiogenesis after myocardial infarction in mice. Journal of Cellular and Molecular Medicine, 2014,18(5):907-918.
[11] Colombo E, Calcaterra F,Cappelletti M,et al. Comparison of fibronectin and collagen in supporting the isolation and expansion of endothelial progenitor cells from human adult peripheral blood. Plos One, 2013,8(6):e66734.
[12] Moon S, Kim S, Park S, et al. Development of a xeno-free autologous culture system for endothelial progenitor cells derived from human umbilical cord blood. Plos One, 2013,8(9):e75224.
[13] Hager G, Holnthoner W, Wolbank S,et al. Three specific antigens to isolate endothelial progenitor cells from human liposuction material. Cytotherapy, 2013,15(11):1426-1435.
[14] Sekiguchi H, Ii M, Jujo K, et al. Improved culture-based isolation of differentiating endothelial progenitor cells from mouse bone marrow mononuclear cells. Plos One, 2011,6(12):e28639.
[15] Zhou L, Xia J, Qiu X,et al. In vitro evaluation of endothelial progenitor cells from adipose tissue as potential angiogenic cell sources for bladder angiogenesis. Plos One, 2015,10(2):e0117644.
[16] Masuda H, Iwasaki H, Kawamoto A, et al. Development of serum-free quality and quantity control culture of colony-forming endothelial progenitor cell for vasculogenesis. Stem Cells Transl Med, 2012,1:160-171.
[17] Bueno-Betí C, Novella S, Lazaro-Franco M, et al. An affordable method to obtain cultured endothelial cells from peripheral blood. Journal of Cellular and Molecular Medicine, 2013,17(11):1475-1483.
[18] D'Alessio A, Moccia F, Li J,et al, Angiogenesis and vasculogenesis in health and disease. BioMed Research International, 2015,2015:1-2.
[19] Hecht N, Schneider U C, Czabanka M,et al, Endothelial progenitor cells augment collateralization and hemodynamic rescue in a model of chronic cerebral ischemia. J Cereb Blood Flow Metab, 2014,34(8):1297-1305.
[20] Iskander A,Knight R A,Zhang Z G, et al. Intravenous administration of human umbilical cord blood-derived AC133 γ endothelial progenitor cells in rat stroke model reduces infarct volume: magnetic resonance imaging and histological findings. Stem Cells Translational Medicine, 2013,2(2013):703-714.
[21] Bai Y Y, Peng X G, Wang L S, et al. Bone marrow endothelial progenitor cell transplantation after ischemic stroke: an investigation into its possible mechanism. CNS Neurosci Ther, 2015,21(11):877-886.
[22] Safar M M, Arab H H, Rizk S M, et al. Bone marrow-derived endothelial progenitor cells protect against scopolamine-induced alzheimer-like pathological aberrations. Molecular Neurobiology, 2016,53(3):1403-1418.
[23] Cao G, Liu C, Wan Z, et al.Combined hypoxia inducible factor-1α and homogeneous endothelial progenitor cell therapy attenuates shunt flow-induced pulmonary arterial hypertension in rabbits. The Journal of Thoracic and Cardiovascular Surgery, 2015,150(3):621-632.
[24] Kawamoto A, Katayama M, Handa N, et al. Intramuscular transplantation of G-CSF-mobilized CD34+ cells in patients with critical limb ischemia: A phase I/IIa, multicenter, single-blinded, dose-escalation clinical trial. Stem Cells, 2009,27(2009):2857-2864.
[25] Murphy M P, Lawson J H, Rapp B M, et al.Autologous bone marrow mononuclear cell therapy is safe and promotes amputation-free survival in patients with critical limb ischemia. Journal of Vascular Surgery, 2011,53(6):1565-1574.
[26] Teraa M, Sprengers R W, Schutgens R E,et al.Effect of repetitive intra-arterial infusion of bone marrow mononuclear cells in patients with no-option limb ischemia: The randomized, double-blind, placebo-controlled rejuvenating endothelial progenitor cells via transcutaneous intra-arterial supplementation (JUVENTAS) trial. Circulation, 2015,131(10):851-860.
[27] Tanaka R, Masuda H, Kato S,et al.Autologous G-CSF-mobilized peripheral blood CD34+ cell therapy for diabetic patients with chronic nonhealing ulcer. Cell Transplantation, 2014,23(2):167-179.
[28] Jimenez-Quevedo P,Gonzalez-Ferrer J J,Sabate M,et al.Selected CD133+ progenitor cells to promote angiogenesis in patients with refractory angina: Final results of the progenitor randomized trial. Circulation Research, 2014,115(11):950-960.
[29] Lee F, Chen Y, Sung P, et al. Intracoronary transfusion of circulation-derived CD34+ cells improves left ventricular function in patients with end-stage diffuse coronary artery disease unsuitable for coronary intervention. Critical Care Medicine, 2015,43(10):2117-2132.
[30] Lee J S, Hong J M, Moon G J, et al.A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells, 2010,28(6):1099-1106.
[31] Wang X X, Zhang F R, Shang Y P, et al.Transplantation of autologous endothelial progenitor cells may be beneficial in patients with idiopathic pulmonary arterial hypertension: a pilot randomized controlled trial. J Am Coll Cardiol, 2007,49(14):1566-1571.
[32] Takahashi M, Nakamura T, Toba T, et al. Transplantation of endothelial progenitor cells into the lung to alleviate pulmonary hypertension in dogs. Tissue Eng, 2004,10(5-6):771-779.
[33] Maldonado G E, Pérez C A, Covarrubias E E, et al.Autologous stem cells for the treatment of post-mastectomy lymphedema: a pilot study. Cytotherapy, 2011,13(10):1249-1255.
[34] Nash R A, McSweeney P A, Crofford L J, et al. High-dose immunosuppressive therapy and autologous hematopoietic cell transplantation for severe systemic sclerosis: long-term follow-up of the US multicenter pilot study. Blood. 2007,110(4):1388-1396.
[35] Arici V, Bozzani A, Ragni F, et al.Autologous endothelial progenitor cells derived from peripheral blood for the treatment of critical limb ischemia in no-option patients: pilot study, Ital J Vas Endovasc Surg,2010,17(3):11-14.
[36] Kinoshita M, Fujita Y, Katayama M, et al.Long-term clinical outcome after intramuscular transplantation of granulocyte colony stimulating factor-mobilized CD34 positive cells in patients with critical limb ischemia. Atherosclerosis, 2012,224(2):440-445.
[37] Invernici G, Emanueli C, Madeddu P, et al. Human fetal aorta contains vascular progenitor cells capable of inducing vasculogenesis, angiogenesis, and myogenesis in vitro and in a murine model of peripheral ischemia. Am J Pathol, 2007,170(6): 1879-1892.
[38] Khera M, Albersen M, Mulhall J P, et al. Mesenchymal stem cell therapy for the treatment of erectile dysfunction. J Sex Med, 2015,12(5):1105-1106.
[39] Maione C, Botti C, Coppola C A, et al.Effect of autologous transplantation of bone marrow cells concentrated with the MarrowXpress system in patients with critical limb ischemia. Transplant Proc, 2013,45(1):402-406.

[1] 孙强明, 潘玥, 赵玉娇, 陈俊英, 施海晶, 马绍辉. 人Semaphorin 4D慢病毒载体的构建及鉴定[J]. 中国生物工程杂志, 2011, 31(7): 1-7.
[2] 于海莹, 崔磊, 曹谊林. 内皮祖细胞(EPCs)研究进展[J]. 中国生物工程杂志, 2003, 23(8): 7-10.
[3] 张震元. 日美共同研究FGF等血管新生因子[J]. 中国生物工程杂志, 1987, 7(6): 64-64.