Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (11): 47-53    DOI: 10.13523/j.cb.20141107
研究报告     
结核分枝杆菌抗原重组酿酒酵母免疫诱导小鼠特异性免疫应答
陆健, 江佳稀, 刘建平, 王洪海
复旦大学生命科学学院 遗传工程国家重点实验室 上海 200433
The Vaccination with Saccharomyces cerevisiae Recombined with Mycobacterium tuberculosis Antigens Induces Specific Immunoresponsesin Mice
LU Jian, JIAN Jia-xi, LIU Jian-ping, WANG Hong-hai
State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
 全文: PDF(1138 KB)   HTML
摘要:

近年来基于重组酿酒酵母全细胞的新型疫苗研究报道不断出现。以结核杆菌重要保护抗原ESAT6和Ag85B为对象,采用pHR酿酒酵母表达系统,构建了两种分别表达ESAT6-Ag85B(EA)和IFN-γ-ESAT6-Ag85B(IEA)融合抗原的重组酿酒酵母Yeast-EA和Yeast-IEA。重组酵母以皮下注射方式免疫小鼠后,小鼠产生高水平Ag85B特异性抗体,淋巴细胞分泌IFN-γ、IL-2等细胞因子,无IL-4产生,发生Th1型细胞免疫应答,其中Yeast-IEA效应更强,优于传统的BCG疫苗。实验证实重组酵母能够刺激树突状细胞的成熟分化。研究结果显示结核分枝杆菌抗原重组酿酒酵母全细胞疫苗具有发展成为新型抗结核疫苗的潜力。

关键词: 酿酒酵母疫苗结核分枝杆菌BCG    
Abstract:

Recently there were increasing reports about vaccines based on whole recombinant Saccharomyces cerevisiae. Mycobacterium tuberculosis (Mtb) protective antigens ESAT6 and Ag85B against tuberculosis were selected to be expressed in S. cerevisiae with pHR expression system. Two yeasts producing fusion proteins ESTA6-Ag85B (EA) and IFN-γ-ESAT6-Ag85B(IEA)respectively were constructed and the immune responses elicited by the recombinant yeasts were investigated in mice. Injection of mice subcutaneously with the recombinant yeasts induced Ag85B-specific IgG in high level and Th1 immune responses associated with IFN-γ and IL-2 secretion and no IL-4 production. Compared to BCG, Yeast-IEA vaccination stimulated significantly stronger immune response. It was confirmed that yeast could activated dendritic cells maturation with upregulation of co-stimulatory molecules and MHC molecules. The results suggest that the whole recombinant yeast (Yeast-IEA) may be an attractive candidate of vaccines against tuberculosis.

Key words: Saccharomyces cerevisiae    Vaccine    Mycobacterium tuberculosis    BCG
收稿日期: 2014-08-19 出版日期: 2014-11-25
ZTFLH:  Q36  
基金资助:

"十二五"国家科技重大专项(2012ZX10003002-002), 上海市基础研究重点项目 (08JC1401100)资助项目

通讯作者: 刘建平,jpliu@fudan.edu.cn     E-mail: jpliu@fudan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

陆健, 江佳稀, 刘建平, 王洪海. 结核分枝杆菌抗原重组酿酒酵母免疫诱导小鼠特异性免疫应答[J]. 中国生物工程杂志, 2014, 34(11): 47-53.

LU Jian, JIAN Jia-xi, LIU Jian-ping, WANG Hong-hai. The Vaccination with Saccharomyces cerevisiae Recombined with Mycobacterium tuberculosis Antigens Induces Specific Immunoresponsesin Mice. China Biotechnology, 2014, 34(11): 47-53.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20141107        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I11/47


[2] Kaufmann S H. Tuberculosis vaccines: time to think about the next generation. Semin Immunol, 2013, 25(2):172-181.

[3] Kaufmann S H. Fact and fiction in tuberculosis vaccine research: 10 years later. Lancet Infect Dis, 2011,11:633-640.

[4] Rowland R, McShane H. Tuberculosis vaccines in clinical trials. Expert Rev Vaccines, 2011,10(5): 645–658.

[5] Celik E, Calik P. Production of recombinant proteins by yeast cells. Biotechnology Advances, 2012, 30:1108-1118.

[6] McAleer W J, Buynak E B, Maigetter R Z, et al. Human hepatitis B vaccine from recombinant yeast. Nature, 1984, 307:178-180.

[7] Stubbs A C, Martin K S, Coeshott C, et al. Whole recombinant yeast vaccine activates dendritic cells and elicits protective cell-mediated immunity. Nature medicine, 2001;7(5):625-629.

[8] Haller A A, Lauer G M, King T H, et al. Whole recombinant yeast-based immunotherapy induces potent T cell responses targeting HCV NS3 and Core proteins. Vaccine, 2007, 25(8):1452-1463.

[9] Galao R P, Scheller N, Alves-Rodrigues I, et al. Saccharomyces cerevisiae: a versatile eukaryotic system in virology. Microbial Cell Factories, 2007,6:32-37.

[10] 江佳稀,张宇飞,沈洪波,等. 表达结核杆菌抗原的重组酿酒酵母免疫小鼠研究. 复旦学报(自然科学版), 2011,50(2):192-197.
Jiang J X,Zhang Y F, Shen H B,et al.Induction of antigenspecific humoral immune response by subcutaneous vaccination with Saccharomyces cerevisia expressing Mycobacterium tuberculosis antigen.Journal of Fudan University(Natural Science),2011,50(2):192197.

[11] Bernstein M B, Chakraborty M, Wansley E K, et al. Recombinant Saccharomyces cerevisiae (yeast-CEA) as a potent activator of murine dendritic cells. Vaccine, 2008, 26(4): 509-521.

[12] Remondo C, Ceredaa V, Mostbock S, et al. Human dendritic cell maturation and activation by a heat-killed recombinant yeast (Saccharomyces cerevisiae) vector encoding carcinoembryonic antigen. Vaccine, 2009, 27:987-994.

[13] Wansley E K, Chakraborty M, Hance K W, et al. Vaccination with a recombinant Saccharomyces cerevisiae expressing a tumor antigen breaks immune tolerance and elicits therapeutic antitumor responses. Clinical Cancer Research, 2008, 14(13):4316-4325.

[14] Dietrich J, Doherty T M. Interaction of Mycobacterium tuberculosis with the host: consequences for vaccine development. APMIS, 2009, 117: 440-457.

[15] Sable S B, Verma I, Khuller G K, et al. Multicomponent antituberculous subunit vaccine based on immunodominant antigens of Mycobacterium tuberculosis. Vaccine, 2005, 23: 4175-4184.

[16] Tsolaki A G, Nagy J, Leiva S, et al. Mycobacterium tuberculosis antigen 85B and ESAT-6 expressed as a recombinant fusion protein in Mycobacterium smegmatis elicits cell-mediated immune response in a murine vaccination model. Molecular Immunology, 2013, 54(3-4):278-283.

[17] Lalvani A, Sridhar S, von Reyn C F. Tuberculosis vaccines: time to reset the paradigm. Thorax, 2013, 68(12):1092-1094.
expressing a tumor antigen breaks immune tolerance and elicits therapeutic antitumor responses. Clinical Cancer Research, 2008, 14(13):4316-4325.

[18] Dietrich J, Doherty T M. Interaction of Mycobacterium tuberculosis with the host: consequences for vaccine development. APMIS, 2009, 117: 440-457.

[19] Sable S B, Verma I, Khuller G K, et al. Multicomponent antituberculous subunit vaccine based on immunodominant antigens of Mycobacterium tuberculosis. Vaccine, 2005, 23: 4175-4184.

[20] Tsolaki A G, Nagy J, Leiva S, et al. Mycobacterium tuberculosis anresponse in a murine vaccination model. Molecular Immunology, 2013, 54(3-4):278-283.

[21] Lalvani A, Sridhar S, von Reyn C F. Tuberculosis vaccines: time to reset the paradigm. Thorax, 2013, 68(12):1092-1094.

[22] Shortman K, Liu Y J. mouse and human dendritic cell subtypes. Nature Reviews Immunology, 2002, 2(3):151-161.

[1] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[2] 薛志勇,代红生,张显元,孙艳颖,黄志伟. 表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*[J]. 中国生物工程杂志, 2021, 41(11): 32-39.
[3] 肖云喜,张俊河,杨雯雯,程洪伟. 用于疫苗生产的人二倍体细胞研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 74-81.
[4] 朱潇静,王芮,张欣欣,靳家鑫,路闻龙,丁大顺,霍翠梅,李青梅,孙爱军,庄国庆. 利用细菌人工染色体技术构建整合F基因的重组MDV疫苗株*[J]. 中国生物工程杂志, 2021, 41(10): 33-41.
[5] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[6] 程旭,杨雨睛,吴赛男,侯勤龙,李咏梅,韩慧明. 金黄色葡萄球菌SarAIcaA及其融合基因的DNA疫苗构建及在小鼠免疫应答中的初步研究 *[J]. 中国生物工程杂志, 2020, 40(7): 41-50.
[7] 岑黔鸿,高彤,任怡,雷涵. 重组酿酒酵母表达幽门螺杆菌VacA蛋白及其免疫原性分析*[J]. 中国生物工程杂志, 2020, 40(5): 15-21.
[8] 刘珍珍,田大勇. 狂犬病疫苗蔗糖密度梯度离心纯化工艺开发 *[J]. 中国生物工程杂志, 2020, 40(4): 25-33.
[9] 钱颖,钱晨,白晓庆,王晶晶. 免疫佐剂在肿瘤免疫疗法中的应用进展 *[J]. 中国生物工程杂志, 2020, 40(3): 96-103.
[10] 谢华玲,吕璐成,杨艳萍. 全球冠状病毒疫苗专利分析[J]. 中国生物工程杂志, 2020, 40(1-2): 57-64.
[11] 井汇源,段二珍,董望. 体外转录的自我复制型mRNA疫苗研究进展*[J]. 中国生物工程杂志, 2020, 40(12): 25-30.
[12] 廖小艳,陈丽丽. COVID-19疫苗研究现状*[J]. 中国生物工程杂志, 2020, 40(12): 8-17.
[13] 冯雪娇,侯海龙,喻琼,王俊姝. 我国宫颈癌疫苗市场分析及对策研究*[J]. 中国生物工程杂志, 2020, 40(11): 96-101.
[14] 章小毛,郭敬涵,洪解放,陆海燕,丁娟娟,邹少兰,范寰. UPRE-lac Z为报告基因评价酵母UPR响应初步研究 *[J]. 中国生物工程杂志, 2020, 40(10): 1-9.
[15] 胡妍,李辉,何承文,朱婧,谢志平. 酵母亚细胞结构分离效率评估菌株的构建 *[J]. 中国生物工程杂志, 2020, 40(10): 10-23.