Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (10): 79-86    DOI: 10.13523/j.cb.20141013
技术与方法     
过表达谷胱甘肽合成酶基因增强烟草对镉的耐受性
贾翠翠1, 季静1, 王罡1, 田小卫2,3, 杜希龙2, 关春峰1, 金超1, 吴电云2
1. 天津大学环境科学与工程学院 天津 300072;
2. 天津大学化工学院 天津 300072;
3. 天津农学院园艺园林学院 天津 300384
Over-expression of Glutathione Synthetase Gene Enhances Cadmium Tolerance in Transgenic Tobacco Plant
JIA Cui-cui1, JI Jing1, WANG Gang1, TIAN Xiao-wei2,3, DU Xi-long2, GUAN Chun-feng1, JIN Chao1, WU Dian-yun2
1. School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China;
2. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;
3. College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384, China
 全文: PDF(1720 KB)   HTML
摘要:

随着工业的发展,土壤污染问题愈发严重,利用基因工程修复土壤技术备受青睐,因此,开发重金属应答中的限速酶基因,将为植物修复重金属污染的土壤提供可应用的基因资源.通过RT-PCR及末端克隆方法获得枸杞谷胱甘肽合成酶 (Lycium chinense,Glutathione synthetase,LcGS>) 基因,采用半定量RT-PCR分析了枸杞LcGS在不同时间镉(Cd)胁迫下表达量的变化,LcGS表达量随着胁迫时间的延长而增强,胁迫9h、12h和24h 后LcGS表达量维持在较高水平.同时构建了植物双元表达载体pCAMBIA2300-LcGS,通过农杆菌介导的方法将LcGS基因转入烟草,PCR证明了LcGS基因成功整合到烟草基因组中,在Cd处理条件下,转基因植株谷胱甘肽 (glutathione,GSH)、植物螯合肽(phytochelatins,PCs)和叶绿素含量比对照组明显高,即转基因植株对重金属的耐逆性比对照组更强,因此,过表达GS植物将是植物修复重金属污染的一个有效策略.

关键词: 枸杞LcGSCdCl2胁迫PCs    
Abstract:

Soil pollution, as a result of industrial development, is becoming a serious problem in China and raising increasing concerns from the public. Soil remediation through plant genetic engineering is a widely used method to tackle this problem. The theory is to provide a new genetic resource for heavy metal phytoremediation through the study and manipulation of heavy metal responsive rate-limiting enzymes in plants. The gene LcGS, coding glutathion synthetase (GS) of Lycium chinense was cloned using reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). Expression of LcGS in L.chinense under CdCl2 stress over a 24h time period was monitored and analyzed using semi-quantitative RT-PCR. The expression of LcGS gene up-regulated initially following the increase of Cd stress time, then remained at a relatively high level from 9h, till the end of the monitoring period at 24h. The expression vector containing this gene was also constructed and named pCAMBIA2300-LcGS. Then the LcGS expression cassette was transformed into tobacco via Agrobacterium-mediated transformation. Integration of this foreign gene was confirmed using PCR. Under CdCl2 stress, transgenic plants carrying LcGS gene contain higher contents of glutathione (GSH), phytochelatins (PCs) and chlorophyll than wild-type plants, confirming higher tolerance to CdCl2. Therefore, over-expression of glutathion synthetase genes through genetic engineering can be a promising strategy for heavy metal phytoremediation.

Key words: Lycium chinense    Glutathione synthetase    CdCl2 Stress    PCs
收稿日期: 2014-07-16 出版日期: 2014-10-25
ZTFLH:  Q789  
基金资助:

国家自然科学基金(31271793,31271419)、国家转基因生物新品种培育重大专项(2014ZX08003-002B, 2014ZX07203-009)资助项目

通讯作者: 季静     E-mail: jijingtjdx@163.com;wanggangtjdx@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

贾翠翠, 季静, 王罡, 田小卫, 杜希龙, 关春峰, 金超, 吴电云. 过表达谷胱甘肽合成酶基因增强烟草对镉的耐受性[J]. 中国生物工程杂志, 2014, 34(10): 79-86.

JIA Cui-cui, JI Jing, WANG Gang, TIAN Xiao-wei, DU Xi-long, GUAN Chun-feng, JIN Chao, WU Dian-yun. Over-expression of Glutathione Synthetase Gene Enhances Cadmium Tolerance in Transgenic Tobacco Plant. China Biotechnology, 2014, 34(10): 79-86.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20141013        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I10/79


[1] Rennenberg H. Glutathione metabolism and possible biological roles in higher plants. Phytochemistry, 1980,21:2771-2781.

[2] Fahey R C, Sundquist A R. Evolution of glutathione metabolism. Adv Enzymol Relat Areas Mol Biol, 1991,64:53.

[3] Hopkins F G, Zetterström R, Eijkman C. The dawn of vitamins and other essential nutritional growth factors. Acta Paediatrica, 2006,95:1331-1333.

[4] 胡文琴, 王恬, 孟庆利. 抗氧化活性肽的研究进展. 中国油脂, 2004,29:42-45. Hu W Q, Wang T, Meng Q L. Research advance of antioxidative bioactive peptides. China Oils and Fats, 2004, 29:42-45.

[5] Dixon D P, Skipsey M, Grundy N M, et al. Stress-induced protein S-glutathionylation in Arabidopsis. Plant Physiology, 2005,138:2233-2244.

[6] 陈坤明, 宫海军, 王锁民. 植物谷胱甘肽代谢与环境胁迫. 西北植物学报, 2004,24:1119-1130. Chen K M, Gong H J, WANG S M. Glutathione metabolism and environmental stresses in plants. Acta Botanica Boreali-occidentalia Sinica, 2004,24:1119-1130.

[7] Howden R, Andersen C R, Goldsbrough P B, et al. A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana. Plant Physiology, 1995,107:1067-1073.

[8] Zenk M H. Heavy metal detoxification in higher plants-a review. Gene, 1996,179:21-30.

[9] Zhu Y L, Pilon-Smits E A, Jouanin L, et al. Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiology, 1999,119:73-80.

[10] Cobbett C, Goldsbrough P. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology, 2002,53:159-182.

[11] Rauser W E, Schupp R, Rennenberg H. Cysteine, γ-glutamylcysteine, and glutathione levels in maize Seedlings distribution and translocation in normal and cadmium-exposed Plants. Plant Physiology, 1991,97:128-138.

[12] Gushima H, Yasuda S, Soeda E, et al. Complete nucleotide sequence of the E. coli glutathione synthetase gsh-II. Nucleic Acids Research, 1984,12:9299-9307.

[13] Watanabe K, Yamano Y, Murata K, et al. The nudeotide sequence of the gene for γ-glutamylcysteine synthetase of Escherichia coli. Nucleic Acids Research, 1986,14:4393-4400.

[14] Mooz E D, Meister A. Glutathione biosynthesis: I. γ-Glutamylcysteine synthetase (Hog Liver) II. glutathione (tripeptide) synthetase (yeast). Methods in Enzymology, 1971,17:483-495.

[15] Ohtake Y, Yabuuchi S. Molecular cloning of the γ-glutamylcysteine synthetase gene of Saccharomyces cerevisiae. Yeast, 1991,7:953-961.

[16] Yan N, Meister A. Amino acid sequence of rat kidney gamma-glutamylcysteine synthetase. Journal of Biological Chemistry, 1990,265:1588-1593.

[17] Huang C, He W, Meister A, et al. Amino acid sequence of rat kidney glutathione synthetase. Proceedings of the National Academy of Sciences, 1995,92:1232-1236.

[18] Ullmann P, Gondet L, Potier S, et al. Cloning of Arabidopsis thaliana glutathione synthetase (GSH2) by functional complementation of a yeast gsh2 mutant. European Journal of Biochemistry, 1996,236:662-669.

[19] Ji J, Wang G, Wang J, et al. Functional analysis of multiple carotenogenic genes from Lycium barbarum and Gentiana lutea L. for their effects on β-carotene production in transgenic tobacco. Biotechnology Letters, 2009,31:305-312.

[20] Grill E, Winnacker E L, Zenk M H. Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proceedings of the National Academy of Sciences, 1987,84:439-443.

[21] Wintermans J, De Mots A. Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochimica et Biophysica Acta (BBA)-Biophysics including Photosynthesis, 1965,109:448-453.

[22] Jez J M, Cahoon R E. Kinetic mechanism of glutathione synthetase from Arabidopsis thaliana. Journal of Biological Chemistry, 2004,279:42726-42731.

[23] Katherine H, Rebecca E. Cahoon, et al. Reaction mechanism of glutathione synthetase from Arabidopsis thaliana. Biophysical Journal, 2007,282:17157-17165.

[24] Galant A, Arkus K A, Zubieta C, et al. Structural basis for evolution of product diversity in soybean glutathione biosynthesis. The Plant Cell Online, 2009,21:3450-3458.

[25] Noctor G, Foyer C H. Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Biology, 1998,49:249-279.

[26] May M J, Vernoux T, Leaver C, et al.Glutathione homeostasis in plants: implications for environmental sensing and plant development. Journal of Experimental Botany, 1998,49:649-667.

[27] Rouhier N, Lemaire S D, Jacquot J P. The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. Annu Rev Plant Biol, 2008,59:143-166.

[28] Steffens J C. The heavy metal-binding peptides of plants. Annual Review of Plant Biology, 1990,41:553-575.

[29] Foyer C H, Souriau N, Perret S, et al. Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiology, 1995,109:1047-1057.

[1] 郭晶,侯占铭. Folpcs1基因对尖孢镰刀菌亚麻专化型的无性繁殖和营养生长的调控 *[J]. 中国生物工程杂志, 2020, 40(3): 48-64.
[2] 李枫, 周田甜, 刘萌, 董宁征. PCSK6对可溶性corin的活化作用研究[J]. 中国生物工程杂志, 2016, 36(7): 15-20.
[3] 高海伶, 季静, 王罡, 吴广霞, 荣非, 关春峰, 金超. LmAPX基因在大肠杆菌和酵母菌中的表达研究[J]. 中国生物工程杂志, 2014, 34(7): 24-29.
[4] 张旭强, 季静, 王罡, 钟影, 刁进进, 关春峰, 吴疆, 金超. 枸杞紫黄质脱环氧化酶(LcVDE)基因的克隆和分析[J]. 中国生物工程杂志, 2014, 34(1): 21-27.
[5] 冯远航, 王罡, 季静, 关春峰, 金超. 枸杞LmP5CS基因的克隆及表达分析[J]. 中国生物工程杂志, 2013, 33(1): 33-40.
[6] 孔路科,郭建巍,马骢,杨林西,魏杰,吴素香. 质粒介导的AmpC β-内酰胺酶共有抗原表位的预测及原核表达[J]. 中国生物工程杂志, 2008, 28(9): 32-38.
[7] 刘丹如,宋长征,张更林,杜国利. 重组HIV-1壳体蛋白在转基因枸杞根系中的分泌表达[J]. 中国生物工程杂志, 2007, 27(2): 53-57.