Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2013, Vol. 33 Issue (9): 17-23    
研究报告     
Tat-PTD介导的金属硫蛋白高产量表达及其高效表达重组菌株重金属抗逆性研究
李华玲, 王凯, 秦艳, 刘丹丹, 陈文飞
扬州大学医学院 扬州 225001
Tat-PTDs Mediated Metallothionein High-yield Expression in Escherichia coli and Its Heavy Metal Resistance Studying
LI Hua-ling, WANG Kai, QING Yan, LIU Dan-dan, CHEN Wen-fei
Medical College of Yangzhou University, Yangzhou 225001, China
 全文: PDF(1366 KB)   HTML
摘要: 目的:探讨Tat-PTDs对金属硫蛋白(metallothionein,MT)表达的促进作用及其体外高效表达重组菌株的重金属抗逆性。方法:采用聚合酶链式反应从小鼠肝脏组织中克隆了金属硫蛋白 MT-1和MT-2 基因的编码序列,进而分别亚克隆入原核表达质粒pET28b-Tat和pET28b,测序验证后转化入大肠杆菌BL21(DE3)细胞,采用1mmol/L诱导剂IPTG诱导表达,并于诱导表达0h,2h,4h,6h时收集菌体,超声破碎后制备总蛋白、上清蛋白和沉淀蛋白并进行SDS-PAGE和Western blot鉴定。针对上述诱导表达4hrs的菌液适量稀释后转接入新的LB培养基,采用分光光度仪测定高效表达金属硫蛋白菌株对5mmol/L铜的抗逆性。结果:Tat-PTDs可明显增加金属硫蛋白的表达产量,且Tat融合蛋白主要为可溶性表达;Western blot及其柱状图分析结果显示,Tat融合蛋白的表达水平约为非Tat融合蛋白的5~8倍;高效表达Tat-MT-1和Tat-MT-2蛋白的菌株具有明显的抗重金属铜的活性,与非Tat标签融合蛋白和空载对照组相比存在显著性差异(P<0.01)。结论:实验数据表明,Tat-PTDs蛋白转导技术可以促进小鼠金属硫蛋白基因在原核生物中的可溶性高表达,Tat融合蛋白的表达水平比非Tat融合蛋白的表达有显著提高,其克隆菌株对重金属铜活性的抗性也有明显提高。
关键词: Tat-PTDs可溶性重金属抗逆性    
Abstract: Objective:To explore the feature of Tat-PTDs for metallothionein (MT) high-yield expression in E. coli and its heavy metal resistance in vitro. Methods:the MT-1, 2 encoding genes in Balb/c mice liver tissue was amplified using polymerase chain reaction (PCR) initially, and subcloned into the prokaryotic expression plasmid pET28b-Tat and pET28b followed direct sequencing separately. The validated plasmids were transformed into E. coli BL21 (DE3) cells and induced using 1 mmol/L IPTG, and the protein samples at 0 h, 2 h, 4 h and 6 h were prepared and identified by SDS-PAGE and Western blot. Subsequently, the bacterial cells at 4 h induced were diluted using LB medium and study its resistance of 5 mm copper. Results:This study demonstrated that Tat-PTDs could obviously increase the expression of MT-1, 2 in E. coli and Tat fusion protein mainly expressed in the bacterial supernatant. The Tat fusion protein expression level was 5~8 folds compared to its control according to the results of Western blot and histogram analysis. Furthermore, the over-expressed Tat-MT-1, 2 bacterial cells had an obvious resistance to 5mm copper compared with its control (P<0.01). Conclusion:the data showed that protein transduction based on Tat-PTDs can promote genes of mouse metallothionein high-yield and soluble expression in prokaryotic system. The Tat fusion protein expression level was significantly improved compared to non-Tat fusion protein and its resistance to copper was also increased.
Key words: Tat-PTDs    Solubility    Heavy metal resistance
收稿日期: 2013-06-20 出版日期: 2013-09-25
ZTFLH:  Q815  
基金资助: 国家自然科学基金资助项目(81100862)
通讯作者: 李华玲hlli@yzu.edu.cn     E-mail: hlli@yzu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李华玲
王凯
秦艳
刘丹丹
陈文飞

引用本文:

李华玲, 王凯, 秦艳, 刘丹丹, 陈文飞. Tat-PTD介导的金属硫蛋白高产量表达及其高效表达重组菌株重金属抗逆性研究[J]. 中国生物工程杂志, 2013, 33(9): 17-23.

LI Hua-ling, WANG Kai, QING Yan, LIU Dan-dan, CHEN Wen-fei. Tat-PTDs Mediated Metallothionein High-yield Expression in Escherichia coli and Its Heavy Metal Resistance Studying. China Biotechnology, 2013, 33(9): 17-23.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2013/V33/I9/17

[1] 史贵涛, 陈振楼, 李海雯, 等. 城市土壤重金属污染研究现状与趋势. 环境监测管理与技术, 2006, 18(06): 9-12+24. Shi G T, Chen ZH L, Li H W, et al. Situation and trend of heavy metal contamination in urban soil. The Administration and Technique of Environmental Monitoring, 2006, 18(06): 9-12+24.
[2] 金艳, 何德文, 柴立元, 等. 重金属污染评价研究进展. 有色金属, 2007, 59(02): 100-104. Jin Y, He D W, Chai L Y, et al. Review on pollution assessment of heavy metal. Nonferrous Metals, 2007, 59(02): 100-104.
[3] 曹斌, 何松洁, 夏建新. 重金属污染现状分析及其对策研究. 中央民族大学学报(自然科学版), 2009, 18(01): 29-33. Cao B, He S J, Xia J X, The actuality analysis of pollution for heavy metal and its countermeasure research. Journal of the Central University for Nationlities, 2009, 18(01): 29-33.
[4] 王秀珍. 加强重金属污染防治刻不容缓. 环境研究与监测, 2013, 26(03): 70-75. Wang X ZH. Augment the prevention of the heavy metal contamination allows of no delay. Environmental Study and Monitoring, 2013, 26(03): 70-75.
[5] 许延娜, 牛明雷, 张晓云. 我国重金属污染来源及污染现状概述. 资源节约与环保, 2013, 02: 55. Xu Y N, Niu M L, Zhang X Y. Overview in the resources of heavy metal contamination of China. Resources Economization Environment Protection, 2013, 02: 55.
[6] 王贝贝, 朱湖地, 陈静. 重金属污染土壤微波玻璃化技术研究. 环境工程, 2013, 31(02): 96-98+108. Wang B B, Zhu H D, Chen J. Study on microwave vitrification technology of heavy metal contaminated soil. Environmental Engineering, 2013, 31(02): 96-98+108.
[7] 林帅. 重金属土壤污染修复技术初探. 科技信息, 2013, 10: 128+124. Lin SH. An approach to remediation of heavy metal contaminated soil. Science and Technology Information, 2013, 10: 128+124.
[8] 陈玲桂. 生物炭输入对农田土壤重金属迁移的影响研究.杭州: 浙江大学环境与资源学院, 2013. Chen L G. Study on the Effect of Biochar on Migration of Heavy Metal in Soil. Hangzhou:College of Environment and Resources in Zhejiang University,2013.
[9] Wu Y H, Ren Ch H, Gao Y, et al. A novel method for promoting heterologous protein expression in Escherichia coli by fusion with the HIV-1 TAT core domain. Amino Acids, 2010,39(3):811-820.
[10] Li G, Zeng Y, Yin J, et al. Cloning, prokaryotic expression, and biological analysis of recombinant chicken IFN-gamma. Hybridoma (Larchmt) 2010, 29(1):1-6.
[11] Li W, Xun M, Chu Y L, et al. Cloning and expression of human keratin 8 gene cDNA in E.coli. Chinese Journal of Cellular and Molecular Immunology, 2010, 26(1):41-43.
[12] Blackwell J R, Horgan R, A novel strategy for production of a highly expressed recombinant protein in an active form. FEBS Lett 1991, 295(1-3):10-12.
[13] Burton N, Cavallini B, Kanno M, et al. Expression in Escherichia coli: purification and properties of the yeast general transcription factor TFIID. Protein Expr Purif 1991, 2(5-6):432-441.
[14] Dubendorff J W, Studier F W, Controlling basal expression in an inducible T7 expression system by blocking the target T7 promoter with lac repressor. J Mol Biol 1991, 219(1):45-59.
[15] Yoon S H, Kim S K, Kim J F, Secretory production of recombinant proteins in Escherichia coli. Recent Pat Biotechnol 2010, 1(04):23-29.
[16] 燕艳, 季志会, 杜伟, 等. 金属硫蛋白应用研究进展. 东北农业大学学报, 2010, 41(07): 150-154. Yan Y, Ji ZH H, Du W, et al. Research progresses of applied metallothionein. Journal of Northeast Agricultural University, 2010, 41(07): 150-154.
[17] 励建荣, 宣伟, 李学鹏, 等. 金属硫蛋白的研究进展. 食品科学, 2010, 31(17): 392-396. Li J R, Xuan W, Li X P, et al. Research progress in metallothionein. Food Science, 2010, 31(17): 392-396.
[18] 路浩, 刘宗平, 赵宝玉. 金属硫蛋白生物学功能研究进展. 动物医学进展, 2009, 30(01): 62-65. Lu H, Liu Z P, Zhao B Y. Progress on biological functions of metallothionein. Progress in Veterinary Medicine, 2009, 30(01): 62-65.
[19] 陈春, 周启星. 金属硫蛋白作为重金属污染生物标志物的研究进展. 农业环境科学学报, 2009, 28(03): 425-432. Chen CH, Zhou Q X. Researching advance in metallothionein and its biomarker of heavy metal contamination. Journal of Agro-environment Science, 2009, 28(03): 425-432.
[20] 和静, 韦思宇, 刘凤勇, 等. 过氧化氢对金属硫蛋白I/I敲除小鼠脾细胞的氧化应激. 中国组织工程研究, 2013, 07: 1243-1250. He J, Wei S Y, Liu F Y, et al. Hydrogen peroxide induced oxidative stress in the spleen of metalothionein knockout mice. Journal of Clinical Rehabilitative Tissue Engineering Research, 2013, 07: 1243-1250.
[1] 张磊,唐永凯,李红霞,李建林,徐逾鑫,李迎宾,俞菊华. 促进原核表达蛋白可溶性的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 138-149.
[2] 邓通,周海胜,吴坚平,杨立荣. 基于分子伴侣策略提高NADPH依赖型醇脱氢酶的异源可溶性表达 *[J]. 中国生物工程杂志, 2020, 40(8): 24-32.
[3] 许敏华,张晶晶,金小宝,李小波,王艳,马艳. 美洲大蠊内生菌几丁质酶基因的克隆、表达及其活性研究 *[J]. 中国生物工程杂志, 2019, 39(1): 31-37.
[4] 刘延娟, 李旭娟, 袁航, 刘娴, 高艳秀, 龚明, 邹竹荣. 融合酰基载体蛋白可增强大肠杆菌重组蛋白的可溶性和热稳定性[J]. 中国生物工程杂志, 2017, 37(7): 115-123.
[5] 冀君, 朱晨晨, 许鑫, 刘晓, 冷超粮, 史鸿飞, 姚伦广, 阚云超. 鸡贫血病毒凋亡素基因的可溶性融合表达及抗肿瘤活性分析[J]. 中国生物工程杂志, 2017, 37(2): 26-32.
[6] 李枫, 周田甜, 刘萌, 董宁征. PCSK6对可溶性corin的活化作用研究[J]. 中国生物工程杂志, 2016, 36(7): 15-20.
[7] 张宇萌, 童梅, 陆小冬, 米月, 徐晨, 姚文兵. 提高大肠杆菌可溶性重组蛋白表达产率的研究进展[J]. 中国生物工程杂志, 2016, 36(5): 118-124.
[8] 刘盼娆, 周雪晨, 朱雪蛟, 白娟, 王先炜, 姜平. 猪圆环病毒2型Cap蛋白在大肠杆菌中的可溶性表达及在小鼠体内免疫特性研究[J]. 中国生物工程杂志, 2016, 36(4): 50-56.
[9] 路青山, 乔媛媛, 李金凤, 王运良, 王姗姗, 史成和, 杨霄鹏, 张达矜. 人HPPCn重组蛋白可溶性表达及其增殖活性检测[J]. 中国生物工程杂志, 2015, 35(12): 15-20.
[10] 张超, 巩蔚, 郭莹莹, 孙卫国, 姚敏, 于爱平. 重组抗凝蛋白-新蛭素的原核表达研究[J]. 中国生物工程杂志, 2014, 34(12): 69-77.
[11] 韩翠晓, 李锋, 严孝金, 冯舵, 李倩倩, 高宏波, 高伟. 叶绿体分裂蛋白PDV1胞质侧结构域可溶性表达条件的研究及纯化[J]. 中国生物工程杂志, 2012, 32(6): 35-42.
[12] 刘启刚, 代云见, 张勇侠, 王保成, 王明蓉. 抗IgE单链抗体在大肠杆菌中可溶性高效表达条件的研究[J]. 中国生物工程杂志, 2012, 32(11): 23-28.
[13] 刘启刚, 代云见, 张勇侠, 王保成, 王明蓉. 抗IgE单链抗体在大肠杆菌中可溶性高效表达条件的研究[J]. 中国生物工程杂志, 2012, 32(11): 23-28.
[14] 李倩倩, 李中媛, 冯舵, 黄火清, 韩翠晓, 杨培龙, 姚斌, 高伟. 芽孢杆菌β-折叠桶植酸酶的原核可溶性表达优化及包涵体复性研究[J]. 中国生物工程杂志, 2012, 32(08): 49-55.
[15] 何红秋, 贾渝跃. HIV-1整合酶核心区可溶性表达及抑制剂筛选[J]. 中国生物工程杂志, 2012, 32(03): 14-19.