Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (05): 36-42    
研究报告     
亚洲玉米螟的O-β-N-氨基乙酰葡萄糖基水解酶 (OfOGA)的基因克隆及重组表达
周罡, 杨君, 杨青
大连理工大学生命科学与技术学院 大连 116023
Cloning and Expression of O-linked β-N-acetylglucosaminidase Gene from Ostrinia furnacalis
ZHOU Gang, YANG Jun, YANG Qing
Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian 116023,China
 全文: PDF(1503 KB)   HTML
摘要:

O-GlcNAc修饰作用是一种普遍存在的动态可逆的糖基化修饰作用,由O-GlcNAc转移酶(OGT)与O-GlcNAc水解酶(OGA)负责调控。以亚洲玉米螟5龄幼虫为对象,克隆获得了全长O-GlcNAc水解酶(OfOGA)基因,其长度为3 541bp,其中5'-非编码区的长度为241bp,编码区的长度为3 165bp,3'-非编码区的长度为132bp;实现了OfOGA在原核表达载体中的重组表达。重组OfOGA由1 055个氨基酸构成,理论分子量118kDa,但SDS-PAGE电泳显示其实际分子量为130kDa。重组OfOGA的最适pH为5.5,最适温度为50℃。亚洲玉米螟OfOGA基因的获得与表达有助于理解OGA 在昆虫生长发育中的作用,提供可能的生物防治靶标。

关键词: O-GlcNAcO-GlcNAc转移酶O-GlcNAcase重组表达亚洲玉米螟    
Abstract:

O-GlcNAcylation is a dynamic and reversible process, regulated by two key enzymes O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). An insect OGA gene was extracted from the fifth instar larva of the Asian corn borer Ostrinia furnacalis (Guenee).Full length OfOGA gene was 3 541bp, containing 241bp 5'-UTR, 3 165bp coding region and 132bp 3'-UTR.Open reading frame (ORF) of OfOGA was cloned and expressed in E.coli. The recombinant OfOGA consisted of 1 055 amino acids, with a theoretical molecular weight of 118 kDa, but an apparent molecular weight of 130 kDa by SDS-PAGE. Its optimal pH was 5.5, and the optimum temperature was 50℃. Recombinant expression of OfOGA may facilitate the understanding of its role in insect development and growth, and provide potential biological control target.

Key words: O-GlcNAc    O-GlcNAc transferase    O-GlcNAcase    Recombinant    Expression    Ostrinia furnacalis (Guenee)
收稿日期: 2012-02-09 出版日期: 2012-05-25
ZTFLH:  Q78  
基金资助:

国家自然科学基金(31070715)、国家"973"计划(2010CB126100)资助项目

通讯作者: 杨青     E-mail: qingyang@dlut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

周罡, 杨君, 杨青. 亚洲玉米螟的O-β-N-氨基乙酰葡萄糖基水解酶 (OfOGA)的基因克隆及重组表达[J]. 中国生物工程杂志, 2012, 32(05): 36-42.

ZHOU Gang, YANG Jun, YANG Qing. Cloning and Expression of O-linked β-N-acetylglucosaminidase Gene from Ostrinia furnacalis. China Biotechnology, 2012, 32(05): 36-42.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I05/36


[1] Torres C R, Hart G W. Topography and Polypeptide Distribution of Terminal N-Acetylglucosamine Residues on the Surfaces of Intact Lymphocytes - Evidence for O-Linked Glcnac. Journal of Biological Chemistry, 1984,259(5): 3308-3317.

[2] Hart G W, Housley M P, Slawson C. Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature, 2007,446(7139): 1017-1022.

[3] Slawson C, Housley M, Hart G W. O-GlcNAc cycling: How a single sugar post-translational modification is changing the way we think about signaling networks. Journal of Cellular Biochemistry, 2006, 97(1): 71-83.

[4] Hanover J A, Forsythe M E, Hennessey P T,et al.A Caenorhabditis elegans model of insulin resistance: Altered macronutrient storage and dauer formation in an OGT-1 knockout. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(32): 11266-11271.

[5] Forsythe M E, Love D C, Lazarus B D, et al. Caenorhabditis elegans ortholog of a diabetes susceptibility locus: oga-1 (O-GlcNAcase) knockout impacts O-GlcNAc cycling, metabolism, and dauer. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(32): 11952-11957.

[6] O’Donnell N, Zachara N E,Hart G W, et al. Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability. Molecular and Cellular Biology, 2004,24(4): 1680-1690.

[7] Hart G W, Dias W B. O-GlcNAc modification in diabetes and Alzheimer’ s disease. Molecular Biosystems, 2007,3(11): 766-772.

[8] Park S, Park S H, Baek J Y, et al. Protein O-GlcNAcylation regulates Drosophila growth through the insulin signaling pathway. Cellular and Molecular Life Sciences, 2011,68(20): 3377-3384.

[9] Haltiwanger R S,Holt G D, Hart G W. Enzymatic Addition of O-Glcnac to Nuclear and Cytoplasmic Proteins-Identification of a UridineDiphospho-N-Acetylglucosamine-Peptide Beta-N-Acetylglucosaminyltransferase. Journal of Biological Chemistry, 1990,265(5): 2563-2568.

[10] Sinclair D A, Syrzycka M, Macauley M, et al. Drosophila O-GlcNAc transferase (OGT) is encoded by the Polycomb group (PcG) gene, super sex combs (sxc). Proc Natl Acad Sci U S A, 2009,106(32): 13427-13432.

[11] Nolte D, Muller U. Human O-G1cNAc transferase (OGT): genomic structure, analysis of splice variants, fine mapping in Xq13.1. Mammalian Genome, 2002,13(1): 62-64.

[12] Martinez-Fleites1 C,Macauley M S,Martinez-Fleites Y H,et al. Structure of an O-GlcNAc transferase homolog provides insight into intracellular glycosylation. Nature Structural & Molecular Biology, 2008,15(7): 764-765.

[13] Clarke A J, Hurtado-Guerrero R, Pathak S, et al.Structural insights into mechanism and specificity of O-GlcNAc transferase. Embo Journal, 2008,27(20): 2780-2788.

[14] Lazarus M B, Nam Y S, Jiang J Y, et al.Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature, 2011,469(7331): 564-567.

[15] Overdijk B, Van Der Kroef W M J, Steijn G V, et al. Isolation and Further Characterization of Bovine Brain Hexosaminidase-C. Biochimica Et Biophysica Acta, 1981,659(2): 255-266.

[16] Comtesse N,Maldener E, Meese E. Identification of a nuclear variant of MGEA5, a cytoplasmic hyaluronidase and a beta-N-acetylglucosaminidase. Biochemical and Biophysical Research Communications, 2001,283(3): 634-640.

[17] Farook V S, Bogardus C,Prochazka M. Analysis of MGEA5 on 10q24.1-q24.3 encoding the beta-O-linked N-acetylglucosaminidase as a candidate gene for type 2 diabetes mellitus in Pima Indians. Molecular Genetics and Metabolism, 2002,77(1-2): 189-193.

[18] Gao Y, Wells L, Comer F I, et al. Dynamic O-glycosylation of nuclear and cytosolic proteins - Cloning and characterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain. Journal of Biological Chemistry, 2001,276(13): 9838-9845.

[19] Dennis R J, Taylor E J, Macauley M S, et al.Structure and mechanism of a bacterial beta-glucosaminidase having O-GlcNAcase activity. Nature Structural & Molecular Biology, 2006,13(4): 365-371.

[20] Rao F V, Dorfmueller H C, Villa F, et al.Structural insights into the mechanism and inhibition of eukaryotic O-GlcNAc hydrolysis. Embo Journal, 2006,25(7): 1569-1578.

[21] 王振营,鲁新,何康来,等. 我国研究亚洲玉米螟历史、现状与展望. 沈阳农业大学学报,2000,31(5):402-412. Wang Z Y, Lu X, He K L, et al. Review of History, Present Situation and Prospect of the Asian Maize Borer Research in China. Journal of Shenyang Agricultural University, 2000,31(5):402-412.

[22] Dong D L, Xu Z S, Chevrier M R, et al. Glycosylation of mammalian neurofilaments. Localization of multiple O-linked N-acetylglucosamine moieties on neurofilament polypeptides L and M. Journal of Biological Chemistry, 1993,268(22): 16679-16687.

[23] Yuzwa S A, Macauley M S, Heinonen J E, et al. A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nature Chemical Biology, 2008,4(8): 483-490.

[24] Comer F I, Hart G W.O-Glycosylation of nuclear and cytosolic proteins. Dynamic interplay between O-GlcNAc and O-phosphate. Journal of Biological Chemistry, 2000,275(38): 29179-29182.

[25] McClain D A, Crook E D. Hexosamines and insulin resistance. Diabetes, 1996,45(8): 1003-1009.

[26] Lovea D C,Ghosha S,Mondoux M A, et al. Dynamic O-GlcNAc cycling at promoters of Caenorhabditis elegans genes regulating longevity, stress, and immunity. Proceedings of the National Academy of Sciences of the United States of America, 2010,107(16): 7413-7418.

[1] 王惠临,周凯强,朱红雨,王力景,杨仲璠,徐明波,曹荣月. 凝血因子VII及其重组表达新进展[J]. 中国生物工程杂志, 2021, 41(2/3): 129-137.
[2] 陈素芳,夏明印,曾丽艳,安晓琴,田敏芳,彭建. 抗菌肽Cec4a的重组表达和抗菌活性研究*[J]. 中国生物工程杂志, 2021, 41(10): 12-18.
[3] 乐易林,傅毓,倪黎,孙建中. 热稳定性丙酮酸:铁氧还蛋白氧化还原酶异源表达及其在乙酰辅酶A合成中的应用 *[J]. 中国生物工程杂志, 2020, 40(3): 72-78.
[4] 薛瑞,姚林,王瑞,罗正山,徐虹,李莎. 重组贻贝足蛋白的研究进展与应用*[J]. 中国生物工程杂志, 2020, 40(11): 82-89.
[5] 韩挺翰,龚雪梅,郦娟,丁亚芳,卢辰,张坤晓,高嵩,许恒皓. 一种来源于大菱鲆的热敏型尿嘧啶DNA糖苷酶的克隆表达及酶学性质鉴定 *[J]. 中国生物工程杂志, 2019, 39(10): 34-43.
[6] 王曦,张光德,陈熙明,浦铜良. 溶葡球菌酶在乳酸克鲁维酵母中重组表达、诱变、优化及酶学研究*[J]. 中国生物工程杂志, 2017, 37(12): 49-58.
[7] 饶菁菁, 景一娴, 邹明月, 胡小蕾, 廖飞, 杨晓兰. 季也蒙毕赤酵母菌尿酸酶基因的克隆、重组表达及表征[J]. 中国生物工程杂志, 2017, 37(11): 74-82.
[8] 曾杰. 优质L-天冬酰胺酶的开发与应用及重组表达研究进展[J]. 中国生物工程杂志, 2017, 37(11): 123-131.
[9] 赵一瑾, 王腾飞, 汪俊卿, 王瑞明. 以CotC为分子载体在枯草芽孢杆菌表面展示海藻糖合酶[J]. 中国生物工程杂志, 2017, 37(1): 71-80.
[10] 李梦悦, 王腾飞, 汪俊卿, 赵一瑾, 程成, 王瑞明. 海藻糖合酶在毕赤酵母表面的展示[J]. 中国生物工程杂志, 2016, 36(2): 73-80.
[11] 丁一, 吴海英, 史吉平, 孙俊松. 氢化酶重组表达研究进展[J]. 中国生物工程杂志, 2015, 35(5): 109-118.
[12] 杨波, 陈海琴, 宋元达, 张灏, 陈卫. 动物双歧杆菌肌球交叉反应抗原MCRA酶学功能的研究[J]. 中国生物工程杂志, 2012, 32(12): 30-36.
[13] 高炳淼, 李宝珠, 吴勇, 林波, 朱晓鹏, 长孙东亭, 罗素兰. 重组芋螺毒素GeXIVAWT的表达、纯化和鉴定[J]. 中国生物工程杂志, 2012, 32(09): 34-40.
[14] 魏海涛 张艳 范耀春 李传印 文喻玲 陈元鼎. A组轮状病毒NSP1基因克隆表达及免疫学性质研究[J]. 中国生物工程杂志, 2010, 30(03): 15-21.
[15] 陈元鼎 李传印 范耀春 文喻玲 张艳 魏海涛. A组轮状病毒NSP6蛋白表达及免疫学性质研究[J]. 中国生物工程杂志, 2009, 29(09): 0-0.