Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (08): 111-118    
综述     
微生物分子生态学研究方法的新进展
吕昌勇, 陈朝银, 葛锋, 刘迪秋, 孔祥君
昆明理工大学生命科学与技术学院 昆明 650500
The New Development of the Research Method for Molecular Microbial Ecology
LV Chang-yong, CHEN Chao-yin, GE Feng, LIU Di-qiu, KONG Xiang-jun
Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
 全文: PDF(495 KB)   HTML
摘要: 环境中微生物的群落结构及多样性和微生物的功能及代谢机理是微生物生态学的研究热点,长期以来,由于受到研究技术的限制,对微生物的群落结构和多样性的认识还不全面,微生物的功能及代谢机理方面了解也很少。随着高通量测序、基因芯片等新技术的不断更新,微生物分子生态学的研究方法和研究途径也在不断变化。高通量测序技术改变了微生物多样性、宏基因组学和宏转录组学的研究方法, GeoChip高密度覆盖海量已知功能的基因探针于单张芯片,能快速确定微生物和已知功能基因的存在与否。总结和比较了目前最新的研究手段,并归纳了这些方法的适用性和优缺点。
关键词: 微生物分子生态学高通量测序技术GeoChip宏基因组宏转录组    
Abstract: Microbial community structure and functional metabolism are the research hotspots of microbial ecology. However, the research method of microbial community structure and functional metabolism has been limited by technique for a long time. With the development of new techniques, the research approaches for molecular microbial ecology have being changed. High-throughput sequencing technology has ameliorated the research method of microbial diversity, metagenomics and metatranscriptomics. Meanwhile GeoChip which covered large amount of known functional oligonucleotide probes in single chip could determine the presence or absence of microbes and functional genes quickly. The newest research approaches for molecular microbial ecology study were reviewed and compared, and the applicability, advantages and disadvantages of those approaches were discussed.
Key words: Molecular Microbial Ecology    High-throughput Sequencing Technique    GeoChip Metagenome    Metatranscriptome
收稿日期: 2012-03-13 出版日期: 2012-08-25
ZTFLH:  Q819  
通讯作者: 陈朝银     E-mail: chaoyinchen@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吕昌勇
陈朝银
葛锋
刘迪秋
孔祥君

引用本文:

吕昌勇, 陈朝银, 葛锋, 刘迪秋, 孔祥君. 微生物分子生态学研究方法的新进展[J]. 中国生物工程杂志, 2012, 32(08): 111-118.

LV Chang-yong, CHEN Chao-yin, GE Feng, LIU Di-qiu, KONG Xiang-jun. The New Development of the Research Method for Molecular Microbial Ecology. China Biotechnology, 2012, 32(08): 111-118.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I08/111

[1] Vaz-Moreira I, Egas C, Nunes O C, et al. Culture-dependent and culture-independent diversity surveys target different bacteria: a case study in a freshwater sample. Antonie Van Leeuwenhoek, 2011, 100(2): 245-257.
[2] Lewis K, Epstein S, D’Onofrio A, et al. Uncultured microorganisms as a source of secondary metabolites. J Antibiot (Tokyo), 2010, 63(8): 468-476.
[3] 李慧,何晶晶,张颖,等. 宏基因组技术在开发未培养环境微生物基因资源中的应用. 生态学报, 2008, 28(4): 1762-1773. Li H, He J J, Zhang Y et al. Application of metagenomic technique in the exploring of uncultured environmental microbial gene resource. Acta Ecologica Sinica, 2008, 28(4): 1762-1773.
[4] Schuster S C. Next-generation sequencing transforms today’s biology. Nature, 2008, 5(1): 16-18.
[5] Metzker M L. Sequencing technologies -the next generation. Nat Rev Genet, 2010, 11(1): 31-46.
[6] Mardis E R. The impact of next-generation sequencing technology on genetics. Trends Genet, 2008, 24(3): 133-141.
[7] Ansorge W J. Next-generation DNA sequencing techniques. New Biotechnology, 2009, 25(4): 195-203.
[8] Mardis E R. Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet, 2008, 9: 387-402.
[9] 李晓然. 基于核糖体RNA高通量测序分析微生物群落结构. 上海: 复旦大学, 2011. Li X R. Using ribosomal RNA pyrosequencing to explore the microbial community structure. Shanghai:College of Life Science, Fudan University, 2011.
[10] 段曌,肖炜,王永霞,等. 454测序技术在微生物生态学研究中的应用. 微生物学杂志, 2011, 31(5): 76-81. Duan Z, Xiao W, Wang Y X, et al. Application of 454 sequencing technique in microbial ecology. Journal of Microbiology, 2011, 31(5): 76-81.
[11] Thompson J R, Marcelino L A, Polz M F. Heteroduplexes in mixed-template amplifications: formation, consequence and elimination by ’reconditioning PCR’. Nucleic Acids Res, 2002, 30(9): 2083-2088.
[12] Parameswaran P, Jalili R, Tao L, et al. A pyrosequencing-tailored nucleotide barcode design unveils opportunities for large-scale sample multiplexing. Nucleic Acids Res, 2007, 35(19): e130.
[13] 徐晓宇,刘和. 454测序法在环境微生物生态研究中的应用. 生物技术通报, 2010,1: 73-76. Xu X Y, Liu H. Application of 454 sequencing in environmental microbial ecology. Biotechnology Bulletin, 2010,1: 73-76.
[14] Sogin M L, Morrison H G, Huber J A, et al. Microbial diversity in the deep sea and the underexplored "rare biosphere". Proc Natl Acad Sci U S A, 2006, 103(32): 12115-12120.
[15] Jaenicke S, Ander C, Bekel T, et al. Comparative and joint analysis of two metagenomic datasets from a biogas fermenter obtained by 454-pyrosequencing. PLoS One, 2011, 6(1): e14519.
[16] Zhang X, Yue S, Zhong H, et al. A diverse bacterial community in an anoxic quinoline-degrading bioreactor determined by using pyrosequencing and clone library analysis. Appl Microbiol Biotechnol, 2011, 91(2): 425-434.
[17] Turnbaugh P J, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature, 2009, 457(7228): 480-484.
[18] Alegria A, Szczesny P, Mayo B, et al. Biodiversity in oscypek, a traditional polish cheese, determined by culture-dependent and -independent approaches. Appl Environ Microbiol, 2012, 78(6): 1890-1898.
[19] Chen C P, Tseng C H, Chen C A, et al. The dynamics of microbial partnerships in the coral Isopora palifera. ISME J, 2011, 5(4): 728-740.
[20] Wei H, Dong L, Wang T, et al. Structural shifts of gut microbiota as surrogate endpoints for monitoring host health changes induced by carcinogen exposure. FEMS Microbiol Ecol, 2010, 73(3): 577-586.
[21] Zhang C, Zhang M, Wang S, et al. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J, 2010, 4(2): 232-241.
[22] Wang T, Cai G, Qiu Y, et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J, 2012, 6(2): 320-329.
[23] Zhang C, Zhang M, Pang X, et al. Structural resilience of the gut microbiota in adult mice under high-fat dietary perturbations. ISME J, 2012.
[24] Baker G C, Smith J J, Cowan D A. Review and re-analysis of domain-specific 16S primers. J Microbiol Methods, 2003, 55(3): 541-555.
[25] Polz M F, Cavanaugh C M. Bias in template-to-product ratios in multitemplate PCR. Appl Environ Microbiol, 1998, 64(10): 3724-3730.
[26] Handelsman J, Rondon M R, Brady S F, et al. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol, 1998, 5(10): 245-249.
[27] 周丹燕,戴世鲲,王广华,等. 宏基因组学技术与挑战. 微生物学通报, 2011, 38(4): 591-600. Zhou D Y, Dai S K, Wang G H, et al. The research innovation and challenges in metagenomics. Microbiology China, 2011, 38(4): 591-600.
[28] 蒋云霞,艾春香. 环境宏基因组学技术的主要瓶颈及发展. 环境科学, 2007, 28(12): 2861-2866. Jiang Y X, Ai C X. Main bottleneck and developments of metagenomic technology. Environmental Science, 2007, 28(12): 2861-2866.
[29] Jung J Y, Lee S H, Kim J M, et al. Metagenomic analysis of kimchi, a traditional Korean fermented food. Appl Environ Microbiol, 2011, 77(7): 2264-2274.
[30] Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010, 464(7285): 59-65.
[31] Durso L M, Harhay G P, Bono J L, et al. Virulence-associated and antibiotic resistance genes of microbial populations in cattle feces analyzed using a metagenomic approach. J Microbiol Methods, 2011, 84(2): 278-282.
[32] 李晓晖,李鑫鑫,张维,等. 宏转录组学在微生物生态学研究中的应用. 中国农业科技导报, 2011, 13(4): 58-65. Li X H, Li X X, Zhang W, et al. Application of metatranscriptomics in microbial ecology. Journal of Agricultural Science and Technology, 2011, 13(4): 58-65.
[33] Poretsky R S, Bano N, Buchan A, et al. Analysis of microbial gene transcripts in environmental samples. Appl Environ Microbiol, 2005, 71(7): 4121-4126.
[34] Sorek R, Cossart P. Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nat Rev Genet, 2010, 11(1): 9-16.
[35] Stewart F J, Ulloa O, Delong E F. Microbial metatranscriptomics in a permanent marine oxygen minimum zone. Environ Microbiol, 2012, 14(1): 23-40.
[36] Baldrian P, Kolarik M, Stursova M, et al. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J, 2012, 6(2): 248-258.
[37] Bomar L, Maltz M, Colston S, et al. Directed culturing of microorganisms using metatranscriptomics. MBio, 2011, 2(2): e11-e12.
[38] Gosalbes M J, Durban A, Pignatelli M, et al. Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS One, 2011, 6(3): e17447.
[39] Zakrzewski M, Goesmann A, Jaenicke S, et al. Profiling of the metabolically active community from a production-scale biogas plant by means of high-throughput metatranscriptome sequencing. J Biotechnol, 2012, 158(4):248-258.
[40] Ledford H. The death of microarrays? Nature, 2008, 455(7215): 847.
[41] Roh S W, Abell G C, Kim K H, et al. Comparing microarrays and next-generation sequencing technologies for microbial ecology research. Trends Biotechnol, 2010, 28(6): 291-299.
[42] Chou L S, Liu C S, Boese B, et al. DNA sequence capture and enrichment by microarray followed by next-generation sequencing for targeted resequencing: neurofibromatosis type 1 gene as a model. Clin Chem, 2010, 56(1): 62-72.
[43] He Z, Gentry T J, Schadt C W, et al. GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J, 2007, 1(1): 67-77.
[44] He Z, Deng Y, Van Nostrand J D, et al. GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity. ISME J, 2010, 4(9): 1167-1179.
[45] Lomax C, Liu W J, Wu L, et al. Methylated arsenic species in plants originate from soil microorganisms. New Phytol, 2012, 193(3): 665-672.
[46] Van Nostrand J D, Wu W M, Wu L, et al. GeoChip-based analysis of functional microbial communities during the reoxidation of a bioreduced uranium-contaminated aquifer. Environ Microbiol, 2009, 11(10): 2611-2626.
[47] Liang Y, Van Nostrand J D, N’Guessan L A, et al. Microbial functional gene diversity with a shift of subsurface redox condition during in situ uranium reduction. Appl Environ Microbiol, 2012,78(8):2966-2972.
[48] Liu W, Wang A, Sun D, et al. Characterization of microbial communities during anode biofilm reformation in a two-chambered microbial electrolysis cell (MEC). J Biotechnol, 2011,157(4):628-632
[49] Xie J, He Z, Liu X, et al. GeoChip-based analysis of the functional gene diversity and metabolic potential of microbial communities in acid mine drainage. Appl Environ Microbiol, 2011, 77(3): 991-999.
[50] Shen P, Wang W, Krishnakumar S, et al. High-quality DNA sequence capture of 524 disease candidate genes. Proc Natl Acad Sci U S A, 2011, 108(16): 6549-6554.
[51] Kent B N, Salichos L, Gibbons J G, et al. Complete bacteriophage transfer in a bacterial endosymbiont (Wolbachia) determined by targeted genome capture. Genome Biol Evol, 2011, 3: 209-218.
[52] Isenbarger T A, Finney M, Rios-Velazquez C, et al. Miniprimer PCR, a new lens for viewing the microbial world. Appl Environ Microbiol, 2008, 74(3): 840-849.
[53] Xu R, Chen Q, Robleh Djama Z, et al. Miniprimer PCR assay targeting multiple genes: a new rapid and reliable tool for genotyping Pantoea stewartii subsp. stewartii. Lett Appl Microbiol, 2010, 50(2): 216-222.
[54] Goh K M, Chua Y S, Abudall R N, et al. A comparison of conventional and miniprimer PCR to elucidate bacteria diversity in Malaysia Ulu Slim hot spring using 16S rDNA clone library. Romanian Biotechnological Letters, 2011, 16(3): 8.
[1] 陈亚超,李楠楠,刘子迪,胡冰,李春. 源于甘草内生菌的甘草酸合成相关功能基因的宏基因组挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 37-47.
[2] 田宝玉, 马荣琴. 环境微生物的抗生素抗性和抗性组[J]. 中国生物工程杂志, 2015, 35(10): 108-114.
[3] 唐存多, 史红玲, 唐青海, 焦铸锦, 阚云超, 邬敏辰, 李剑芳. 生物催化剂发现与改造的研究进展[J]. 中国生物工程杂志, 2014, 34(9): 113-121.
[4] 汤熙翔, 易志伟, 李宁, 马群, 李慧, 秦丹, 肖湘. 深海宏基因组文库克隆子发酵产物的生物活性筛选[J]. 中国生物工程杂志, 2011, 31(06): 58-63.
[5] 产竹华, 刘洋, 苏玉斌, 单大鹏, 王水琦, 曾润颖. 深海低温脂肪酶基因工程菌LIP001发酵条件的优化[J]. 中国生物工程杂志, 2011, 31(04): 65-70.
[6] 成晓杰, 仇天雷, 王敏, 张姝, 蔡金国, 高俊莲. 低温沼气发酵微生物区系的筛选及其宏基因组文库构建[J]. 中国生物工程杂志, 2010, 30(11): 50-55.
[7] 杨键 曾丽娟 廖思明 王青艳 杜丽琴 韦宇拓 黄日波. 富集宏基因组DNA中α淀粉酶全长基因的克隆及重组表达[J]. 中国生物工程杂志, 2010, 30(03): 56-60.