Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2011, Vol. 31 Issue (8): 124-132    
综述     
诱导性多潜能干细胞(iPS细胞)的研究进展
马海滨1, 侯玲玲1, 王晓宇1, 关伟军2, 马月辉2
1. 北京交通大学生命科学与生物工程研究院 北京 100044;
2. 中国农业科学院北京畜牧兽医研究所 北京 100193
The Progress of Induced Pluripotent Stem Cells(iPS Cells)
MA Hai-bin1, HOU Ling-ling1, WANG Xiao-yu1, GUAN Wei-jun2, MA Yue-hui2
1. College of Life Sciences and Bioengineering of Beijing Jiaotong University,Beijing 100044, China;
2. Institute of Animal Sciences,Chinese Academy of Agricultural Sciences,Beijing 100193, China
 全文: PDF(1747 KB)   HTML
摘要:

通过转染特定的基因组合可以将已分化的体细胞重编程为多潜能干细胞,这种干细胞称为诱导性多潜能干细胞(induced pluripotent stem cells,iPS cells)。这是近年来干细胞研究领域最令人瞩目的一项新的干细胞制备技术。iPS细胞的出现不仅为体细胞重编程去分化机制的研究提供了新的模型,而且为疾病发生发展相关机制研究与特异的细胞治疗带来了新的希望。就当前获取iPS细胞的方法、影响iPS细胞转化率和多能性维持的一些因素及其研究进展进行综述。

关键词: iPS细胞转化率多能性维持    
Abstract:

Differentiated somatic cells can be reprogramed to induced pluripotent stem cells(iPS cells)by thansfection of a combination of specific genes,which is the most notable stem cell manufacturing technology in the stem cell research field in recent years.iPS cell not only is new model for the study of reprogramming mechanism of somatic cell,but also bring a new hope for the research of disease development mechanism and specific cell therapy. The preparation methods of iPS cells and related factors that influence transformation rate of iPS cells and pluripotency maintenance were summarized.

Key words: iPS cells    Transformation rate    Pluripotency maintenance
收稿日期: 2011-03-03 出版日期: 2011-08-25
ZTFLH:  Q819  
基金资助:

"十一五"国家科技支撑计划重点项目(2008BAK41B01-5)、国家科技基础条件平台建设项目(2005DKA21101)、转基因生物新品种培育科技重大专项(2008ZX08009-003)资助项目 § 同为第一作者

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

马海滨, 侯玲玲, 王晓宇, 关伟军, 马月辉. 诱导性多潜能干细胞(iPS细胞)的研究进展[J]. 中国生物工程杂志, 2011, 31(8): 124-132.

MA Hai-bin, HOU Ling-ling, WANG Xiao-yu, GUAN Wei-jun, MA Yue-hui. The Progress of Induced Pluripotent Stem Cells(iPS Cells). China Biotechnology, 2011, 31(8): 124-132.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2011/V31/I8/124


[1] Takahashi K,Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast culture by defined factors. Cell, 2006, 126:663-676.

[2] Yonehiro Kanemura. Development of cell-processing systems for human stem cells(neural stem cells,mesenchymal stem cells,and iPS cells)for regenerative medicine. Keio J Med, 2010, 59(2):35-45.

[3] Takahashi K,Tanabe K,Ohnuki M,et al.Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007, 13l(5):861-872.

[4] Yu J,Vodyanik M A,Smuga-Otto K,et al. Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007, 318:1917-1920.

[5] Stadtfeld M,Hochedlinger K. Induced pluripotency:history,mechanisms,and applications. Genes Dev, 2010, 24(20):2239-2263.

[6] Zhao X Y,Li W,Lv Z,et al. iPS cells produce viable mice through tetraploid complementation. Nature, 2009, 461(7260):86-90.

[7] Nakagawa M,Takizawa N,Narita M,et al. Promotion of direct reprogramming by transformation-deficient Myc. Proc Natl Acad Sci USA, 2010,107(32):14152-14157.

[8] De Coppi P,Bartsch G Jr,Siddiqui M M,et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol, 2007, 25:100-106.

[9] Li C,Zhou J,Shi G,et al. Pluripotency can be rapidly and efficiently induced in human amniotic fluid-derived cells. Hum Mol Genet, 2009, 18(22):4340-4349.

[10] Raya A,Rodríguez-Pizà I,Guenechea G,et al. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature, 2009, 460(7251):53-59.

[11] Stadtfeld M,Nagaya M,Utikal J,et al. Induced pluripotent stem cells generated without viral integration. Science, 2008, 322(5903):945-949.

[12] Honda A,Hirose M,Hatori M,et al. Generation of induced pluripotent stem cells in rabbits:potential experimental models for human regenerative medicine. J Biol Chem, 2010, 285(41):31362-31369.

[13] Yamanaka S. Patient-specific pluripotent stem cells become even more accessible. Cell Stem Cell, 2010, 7(1):1-2.

[14] Okita K,Nakagawa M,Hyenjong H,et al. Generation of mouse induced pluripotent stem cells without viral vectors. Science, 2008, 322(5903):949-953.

[15] Yu J,Hu K,Smuga-Otto K,et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science, 2009, 324(5928):797-801.

[16] Okita K,Hong H,Takahashi K,et al. Generation of mouse-induced pluripotent stem cells with plasmid vectors. Nat Protoc, 2010, 5(3):418-428.

[17] Jia F,Wilson K D,Sun N,et al. A nonviral minicircle vector for deriving human iPS cells. Nat Methods, 2010,7(3):197-199.

[18] Woltjen K,Michael I P,Mohseni P,et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature, 2009, 458(7239):766-770.

[19] Wang W,Lin C,Lu D,et al. Chromosomal transposition of PiggyBac in mouse embryonic stem cells. Proc Natl Acad Sci USA, 2008, 105(27):9290-9295.

[20] Ichida J K,Blanchard J,Lam K,et al. A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell, 2009, 5(5):491-503.

[21] Zhu S,Li W,Zhou H,et al. Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell, 2010, 7(6):651-655.

[22] Hong H,Takahashi K,Ichisaka T,et al. Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature, 2009, 460(7259):1132-1135.

[23] Utikal J,Polo J M,Stadtfeld M,et al. Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature, 2009, 460(7259):1145-1148.

[24] Marión R M,Strati K,Li H,et al. A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature, 2009, 460(7259):1149-1153.

[25] Li H,Collado M,Villasante A,et al. The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature, 2009, 460(7259):1136-1139.

[26] Zhao Y,Yin X,Qin H,et al. Two supporting factors greatly improve the efficiency of human iPSC generation. Cell Stem Cell, 2008, 3(5):475-479.

[27] Shi M,Liu D,Shen B,et al. Helpers of the cellular gatekeeper-miRNAs dance in P53 network. Biochim Biophys Acta, 2010, 1805(2):218-225.

[28] Huangfu D,Maehr R,Guo W,et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol, 2008, 26(7):795-797.

[29] Yoshida Y,Takahashi K,Okita K,et al. Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell, 2009, 5(3):237-241.

[30] Chen T,Yuan D,Wei B,et al. E-cadherin-mediated cell-cell contact is critical for induced pluripotent stem cell generation. Stem Cells, 2010, 28(8):1315-1325.

[31] Zhou Q,Yan B,Hu X,et al. Luteolin inhibits invasion of prostate cancer PC3 cells through E-cadherin. Mol Cancer Ther, 2009,8:1684-1691.

[32] Buszczak M,Paterno S,Spradling A C. Drosophila stem cells share a common requirement for the histone H2B ubiquitin protease scrawny. Science, 2009, 323(5911):248-251.

[33] Nishino J,Kim I,Chada K,et al. Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf Expression. Cell, 2008, 135(2):227-239.

[34] Yang Y,Xu S,Xia L,et al. The bantam microRNA is associated with drosophila fragile X mental retardation protein and regulates the fate of germline stem cells. PLoS Genet, 2009, 5(4):1-10.

[35] Karumbayaram S,Novitch B G,Patterson M,et al. Directed differentiation of human-induced pluripotent stem cells generates active motor neurons. Stem Cells, 2009, 27(4):806-811.

[36] Kou Z,Kang L,Yuan Y,et al. Mice cloned from induced pluripotent stem cells(iPSCs). Biol Reprod, 2010, 83(2):238-243.

[37] Ueda K,Takano H,Niitsuma Y,et al. Sonic hedgehog is a critical mediator of erythropoietin-induced cardiac protection in mice. J Clin Invest, 2010, 120(6):2016-2029.

[38] Bhutani N,Brady J J,Damian M,et al. Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature, 2010, 463(7284):1042-1047.

[39] Nakagawa M,Takizawa N,Narita M,et al. Promotion of direct reprogramming by transformation-deficient Myc. Proc Natl Acad Sci U S A, 2010, 107(32):14152-14157.

[40] Sun N,Longaker M T,Wu J C. Human iPS cell-based therapy:considerations before clinical applications. Cell Cycle,2010,9(5):880-885.

[41] Li R,Liang J,Ni S,et al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell, 2010, 7(1):51-63.

[1] 吴升星, 李艳, 张海燕, 刘洋, 赖琼, 杨明. 诱导多能干细胞技术在药物研发领域中的前景[J]. 中国生物工程杂志, 2017, 37(11): 116-122.
[2] 夏朦, 田晓红, 柏树令, 侯伟健. 诱导多能干细胞技术的优化及其应用前景[J]. 中国生物工程杂志, 2016, 36(6): 87-91.
[3] 孙昊, 卢存福, 郭允倩. LSD1通过和Oct4/Nanog相互作用调节诱导多能干细胞的形成[J]. 中国生物工程杂志, 2012, 32(12): 25-29.
[4] 单威, 余勤, 刘丽珍, 王标. 诱导性多能干细胞向神经细胞分化的研究进展[J]. 中国生物工程杂志, 2012, 32(09): 82-86.
[5] 苗茂栋,吴敏,邵千飞,马全红,蒋知欲. 利用克雷伯肺炎杆菌限制性底物发酵生产1,3-丙二醇[J]. 中国生物工程杂志, 2008, 28(10): 49-54.
[6] 褚明辉, 郭建强, 高殿昆, 孙淑兰, 肖毅, 王连琴. 用新的紫外荧光光源对维生素D2的最佳光合成[J]. 中国生物工程杂志, 1999, 19(5): 25-26,28-29.
[7] 陈盛, 李柱来. 壳聚糖固定化脲酶研究Ⅱ[J]. 中国生物工程杂志, 1992, 12(5): 40-43,17.
[8] 许光学, 卢泽俭, 林少琨, 林尚安. 人工种子种皮的研究现状[J]. 中国生物工程杂志, 1990, 10(5): 14-23.
[9] B.K.Hamilton, 梅芳. 用生物反应器生产L-氨基酸[J]. 中国生物工程杂志, 1986, 6(4): 33-38.
[10] 柯为. 日本生物工程应用于氨基酸生产取得进展[J]. 中国生物工程杂志, 1985, 5(4): 69-69.
[11] Dhawale.S.S.;Paietta.J.V.;Marzluf.G.A.;陈玉梅. Neurospora的一种新的、快速而有效的转化方法[J]. 中国生物工程杂志, 1984, 4(4): 47-51.