Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2011, Vol. 31 Issue (01): 96-102    
综述     
绿色荧光蛋白及其应用
邓超1, 黄大昉2, 宋福平1
1. 中国农业科学院植物保护研究所植物病虫害生物学国家重点实验室 北京 100193;
2. 中国农业科学院生物技术研究所 北京 100081
Green Fluorescence Protein and its Application
DENG Chao1, HUANG Da-fang2, Song Fu-ping1
1. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
2. Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
 全文: PDF(519 KB)   HTML
摘要:

随着对绿色荧光蛋白(green fluorescent protein,GFP)研究的不断深入,人们对其结构、荧光产生机理等已有较为全面的认识。近年来利用GFP及其它荧光蛋白(FPs)发展了诸如荧光互补技术(FC)、荧光共振能量转移技术(FRET)和超分辨成像(super-resolution imaging)等一系列新技术,极大地促进了生物学、医药科学的研究。主要介绍了荧光蛋白的结构,荧光产生的机理,不同类型的荧光蛋白和基于荧光蛋白产生的新技术等方面的最新研究进展。

关键词: 绿色荧光蛋白(GFP)生色团荧光产生机理荧光蛋白的应用    
Abstract:

The structure and fluorescence mechanism of green fluorescent proteins (GFP) have been well understood after decades of study. Based on these knowledge, scientists discovered and developed a range of novel fluorescent proteins (FPs) with a wide emission spectrum covering from 424~655 nm. With the colorful palette of FPs, new technologies such as fluorescence complementation (FC) fluorescence resonance energy transfer (FRET) and super-resolution imaging have been developed and act as powerful tools in biological and medical studies. The latest progress about the structure, chromophore maturation and fluorescence mechanism of GFP, as well as the extensive FP families and the new technologies based on them were provided.

Key words: Green fluorescent proteins (GFP)    Chromophore    Fluorescence mechanism    Application of fluorescence proteins
收稿日期: 2010-10-25 出版日期: 2011-01-25
ZTFLH:  Q946.1  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
邓超
黄大昉
宋福平

引用本文:

邓超, 黄大昉, 宋福平. 绿色荧光蛋白及其应用[J]. 中国生物工程杂志, 2011, 31(01): 96-102.

DENG Chao, HUANG Da-fang, Song Fu-ping. Green Fluorescence Protein and its Application. China Biotechnology, 2011, 31(01): 96-102.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2011/V31/I01/96


[1] Shimomura O, Johnson F H, Saiga Y. Extraction, purification, and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol, 1962, 59: 223-239.

[2] Shimomura O, Johnson F H, Morise H. Mechanism of the luminescent intramolecular reaction of aequorin. Biochemistry, 1974, 13(16): 3278-3286.

[3] Prasher D, McCann R O, Cormier M J. Cloning and expression of the cDNA coding for aequorin, a bioluminescent calcium-binding protein. Biochem Biophys Res Commun, 1985, 126(3): 1259-1268.

[4] Prasher D C, Eckenrode V K, Ward W W, et al. Primary structure of the Aequorea victoria green-fluorescent protein. Gene, 1992, 111(2): 229-233.

[5] Chalfie M, Tu Y, Euskirchen G, et al. Green fluorescent protein as a marker for gene expression. Science, 1994, 263(5148): 802-805.

[6] Heim R, Prasher D C, Tsien R Y. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci,1994,91 (26): 12501-12504.

[7] Orm? M, Cubitt A B, Kallio K, et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science, 1996, 273 (5280): 1392-1395.

[8] Yang F, Moss L G, Phillips G N Jr. The molecular structure of green fluorescent protein. Nat Biotechnol, 1996, 14(10): 1246-1251.

[9] Wiedenmann J, Oswald F, Nienhaus G U. Fluorescent proteins for live cell imaging: opportunities, limitations, and challenges. IUBMB Life, 2009, 61 (11): 1029-1042.

[10] Craggs T D. Green fluorescent protein: structure, folding and chromophore maturation. Chem Soc Rev, 2009, 38(10): 2865-2875.

[11] Zhang L, Patel H N, Lappe J W, et al. Reaction progress of chromophore biogenesis in green fluorescent protein. J Am Chem Soc, 2006, 128(14): 4766-4772.

[12] Brejc K, Sixma T K, Kitts P A , et al. Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proc Natl Acad Sci, 1997, 94 (6): 2306-2311.

[13] Sniegowski J A, Lappe J W, Patel H N, et al. Base catalysis of chromophore formation in Arg96 and Glu222 variants of green fluorescent protein. J Biol Chem, 2005, 280(28): 26248-26255.

[14] Day R N, Davidson M W. The fluorescent protein palette: tools for cellular imaging. Chem Soc Rev, 2009, 38 (10): 2887-2921.

[15] Piatkevich K D, Verkhusha V V. Advances in engineering of fluorescent proteins and photo-activatable proteins with red emission. Curr Opin Chem Biol, 2010 14(1): 23-29.

[16] Heim R, Cubitt A B, Tsien R Y. Improved green fluorescence. Nature, 1995, (6516): 663-664.

[17] Ilagan R P, Rhoades E, Gruber D F, et al. A new bright green-emitting fluorescent protein engineered monomeric and dimeric forms. FEBS J, 2010, 277(8): 1967-1978.

[18] Lin M Z, McKeown M R, Ng H L, et al. Autofluorescent proteins with excitation in the optical window for intravital imaging in mammals. Chem Biol, 2009,16 (11): 1169-1179.

[19] Strack R L, Hein B, Bhattacharyya D, et al. A rapidly maturing far-red derivative of DsRed-Express2 for whole-cell labeling. Biochemistry, 2009, 48(35): 8279-8281.

[20] Sample V, Newman R H, Zhang J. The structure and function of fluorescent proteins. Chem Soc Rev, 2009, 38(10): 2852-2864.

[21] Pletnev S, Subach F V, Dauter Z, et al. Understanding blue-to-red conversion in monomeric fluorescent timers and hydrolytic degradation of their chromophores. J Am Chem Soc, 2010, 132(7): 2243-2253.

[22] Kerppola T K. Visualization of molecular interactions using bimolecular fluorescence complementation analysis: characteristics of protein fragment complementation. Chem Soc Rev, 2009, 38(10): 2876-2886.

[23] Milev M P, Brown C M, Mouland A J. Live cell visualization of the interactions between HIV-1 Gag and the cellular RNA-binding protein Staufen1. Retrovirology, 2010 (1): 41.

[24] Frster T. Zwischenmolekulare energiewanderung and fluoreszenz. Ann. Physik. 1948, 437(1-2): 55-75.

[25] Shcherbo D, Souslova E A, Goedhart J, et al. Practical and reliable FRET/FLIM pair of fluorescent proteins. BMC Biotechnol, 2009, 9: 24.

[26] Galperin E, Verkhusha V V, Sorkin A. Three-chromophore FRET microscopy to analyze multi-protein interactions in living cells. Nat Methods, 2004, 1(3): 209-217.

[27] Kwaaitaal M, Keinath N F, Pajonk S, et al. Combined bimolecular fluorescence complementation and Frster resonance energy transfer reveals ternary SNARE complex formation in living plant cells. Plant Physiol, 2010, 152(3): 1135-1147.

[28] Huang B, Bates M, Zhuang X W. Super-resolution fluorescence microscopy. Annu Rev Biochem, 2009, 78(1): 993-1016.

[29] Patterson G, Davidson M, Manley S, et al. Superresolution imaging using single-molecule localization. Annu Rev Phys Chem. 2010(61): 345-367.

[30] Lippincott-Schwartz J, Patterson G H. Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. Trends Cell Biol. 2009, 19(11): 555-565.

[31] de Jong I G, Veening J W, Kuipers O P. Heterochronic phosphorelay gene expression as a source of heterogeneity in Bacillus subtilis spore formation. J Bacteriol, 2010, 192(8): 2053-2067.

[32] Pandey M, Syed S, Donmez I, et al. Coordinating DNA replication by means of priming loop and differential synthesis rate. Nature, 2009, 462(7275): 940-943.

[33] Ibraheem A, Campbell R E. Designs and applications of fluorescent protein-based biosensors. Curr Opin Chem Biol, 2010, 14(1): 30-36.

[1] 周露, 刘进元. 不同提取液提取水稻幼苗质外体蛋白效果的比较[J]. 中国生物工程杂志, 2011, 31(01): 51-55.