Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2010, Vol. 30 Issue (02): 127-133    DOI: Q819
综述     
蛋白亚硝基化研究进展及其在植物抗病中的作用
陈晨1,沈昕1,储成才2,王义琴2**
1.北京林业大学生物科学与技术学院 北京 100083
2.中国科学院遗传与发育生物学研究所 北京 100101
Progress in Research Techniques of Protein S-nitrosylation and Its Role in Plant Disease Resistance
1.Beijing Forestry University, Beijing 100083, China
2.Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101,China
 全文: PDF(752 KB)   HTML
摘要:

蛋白亚硝基化(S-nitrosylation)是一种在一氧化氮作用下与蛋白半胱氨酸巯基共价结合,使巯基-SH转化为-SNO的反应。作为一种氧化还原依赖的翻译后调控形式,蛋白亚硝基化对多种蛋白的功能具有调节作用,越来越多的证据表明蛋白亚硝基化在植物抗病中发挥重要的作用。简要介绍了蛋白巯基亚硝基化的特点、检测方法、功能研究以及在植物抗病调节方面的最新进展。

关键词: 蛋白亚硝基化去亚硝基化一氧化氮植物抗病    
Abstract:

S-nitrosylation, the covalent attachment of an Nitric oxide (NO) moiety to Cys residues of proteins, resulting in the formation of S-nitrosothiols(SNO), is a prevalent posttranslational protein modification involved in redox-based cellular signaling. S-nitrosylation has been shown to regulate the function of many proteins which are involved in a wide array of cellular activities. The growing body of evidence now suggested that S-nitrosylation may also have a centrol function in plant disease resistance.The basic concepts of S-nitrosylation, the detection methods, functional studies and the recent progress of S-nitrosylation in plant disease resistance were summarized.

Key words: S-nitrosylation    Denitrosylation    NO    Plant disease resistance
收稿日期: 2009-09-09 出版日期: 2010-02-26
基金资助:

国家自然科学基金资助项目(30600407)

通讯作者: 王义琴     E-mail: yqwang@genetics.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈晨
沈昕
储成才
王义琴

引用本文:

陈晨 沈昕 储成才 王义琴. 蛋白亚硝基化研究进展及其在植物抗病中的作用[J]. 中国生物工程杂志, 2010, 30(02): 127-133.

CHEN Chen, CHEN Cuan, CHU Cheng-Cai, WANG Xi-Qin. Progress in Research Techniques of Protein S-nitrosylation and Its Role in Plant Disease Resistance. China Biotechnology, 2010, 30(02): 127-133.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/Q819        https://manu60.magtech.com.cn/biotech/CN/Y2010/V30/I02/127

[1] Hess D T, Matsumoto A, Kim S O, et al. Protein Snitrosylation: purview and parameters. Nat Rev Mol Cell Biol, 2005, 6 (2):150166. 
[2] Stamler J S. Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell, 1994, 78 (6):931936. 
[3] Guo F Q, Okamoto M, Crawford N M. Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science, 2003, 302 (5642):100103. 
[4] Grennan A K. Protein Snitrosylation: potential targets and roles in signal transduction. Plant Physiol, 2007, 144 (3):12371239. 
[5] Stamler J S, Simon D I, Osborne J A, et al. Snitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci U S A, 1992, 89 (1):444448. 
[6] Lindermayr C, Saalbach G, Durner J. Proteomic identification of Snitrosylated proteins in Arabidopsis. Plant Physiol, 2005, 137 (3):921930. 
[7] Kim S O, Merchant K, Nudelman R, et al. OxyR: a molecular code for redoxrelated signaling. Cell, 2002, 109 (3):383396. 
[8] Iwakiri Y, Satoh A, Chatterjee S, et al. Nitric oxide synthase generates nitric oxide locally to regulate compartmentalized protein Snitrosylation and protein trafficking. Proc Natl Acad Sci U S A, 2006, 103 (52):1977719782. 
[9] Gaston B, Singel D, Doctor A, et al. Snitrosothiol signaling in respiratory biology. Am J Respir Crit Care Med, 2006, 173 (11):11861193. 
[10] Stamler J S, Toone E J, Lipton S A, et al. (S)NO signals: translocation, regulation, and a consensus motif. Neuron, 1997, 18 (5):691696. 
[11] Zhang H, Xu Y, Joseph J, et al. Intramolecular electron transfer between tyrosyl radical and cysteine residue inhibits tyrosine nitration and induces thiyl radical formation in model peptides treated with myeloperoxidase, H2O2, and NO2: EPR SPIN trapping studies. J Biol Chem, 2005, 280 (49):4068440698. 
[12] Mannick J B, Schonhoff C, Papeta N, et al. SNitrosylation of mitochondrial caspases. J Cell Biol, 2001, 154 (6):11111116. 
[13] Doctor A, Platt R, Sheram M L, et al. Hemoglobin conformation couples erythrocyte Snitrosothiol content to O2 gradients. Proc Natl Acad Sci U S A, 2005, 102 (16):57095714. 
[14] Mannick J B, Hausladen A, Liu L, et al. Fasinduced caspase denitrosylation. Science, 1999, 284 (5414):651654. 
[15] McMahon T J, Moon R E, Luschinger B P, et al. Nitric oxide in the human respiratory cycle. Nat Med, 2002, 8 (7):711717. 
[16] Gow A, Doctor A, Mannick J, et al. SNitrosothiol measurements in biological systems. J Chromatogr B Analyt Technol Biomed Life Sci, 2007, 851 (12):140151. 
[17] Gow A J, Chen Q, Hess D T, et al. Basal and stimulated protein Snitrosylation in multiple cell types and tissues. J Biol Chem, 2002, 277 (12):96379640. 
[18] Lee S J, Lee J R, Kim Y H, et al. Investigation of tyrosine nitration and nitrosylation of angiotensin II and bovine serum albumin with electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom, 2007, 21 (17):27972804. 
[19] Jaffrey S R. Detection and characterization of protein nitrosothiols. Methods Enzymol, 2005, 396 105118. 
[20] Jaffrey S R, Snyder S H. The biotin switch method for the detection of Snitrosylated proteins. Sci STKE, 2001, 2001 (86):PL1. 
[21] Huang B, Chen C. An ascorbatedependent artifact that interferes with the interpretation of the biotin switch assay. Free Radic Biol Med, 2006, 41 (4):562567. 
[22] Han P, Chen C. Detergentfree biotin switch combined with liquid chromatography/tandem mass spectrometry in the analysis of Snitrosylated proteins. Rapid Commun Mass Spectrom, 2008, 22 (8):11371145. 
[23] Santhanam L, Gucek M, Brown T R, et al. Selective fluorescent labeling of Snitrosothiols (SFLOS): a novel method for studying Snitrosation. Nitric Oxide, 2008, 19 (3):295302. 
[24] Han P, Zhou X, Huang B, et al. Ongel fluorescent visualization and the site identification of Snitrosylated proteins. Anal Biochem, 2008, 377 (2):150155. 
[25] Perazzolli M, Dominici P, RomeroPuertas M C, et al. Arabidopsis nonsymbiotic hemoglobin AHb1 modulates nitric oxide bioactivity. Plant Cell, 2004, 16 (10):27852794. 
[26] Leiper J, MurrayRust J, McDonald N, et al. Snitrosylation of dimethylarginine dimethylaminohydrolase regulates enzyme activity: further interactions between nitric oxide synthase and dimethylarginine dimethylaminohydrolase. Proc Natl Acad Sci U S A, 2002, 99 (21):1352713532. 
[27] Hao G, Xie L, Gross S S. Argininosuccinate synthetase is reversibly inactivated by Snitrosylation in vitro and in vivo. J Biol Chem, 2004, 279 (35):3619236200. 
[28] Belenghi B, RomeroPuertas M C, Vercammen D, et al. Metacaspase activity of Arabidopsis thaliana is regulated by Snitrosylation of a critical cysteine residue. J Biol Chem, 2007, 282 (2):13521358. 
[29] Lindermayr C, Saalbach G, Bahnweg G, et al. Differential inhibition of Arabidopsis methionine adenosyltransferases by protein Snitrosylation. J Biol Chem, 2006, 281 (7):42854291. 
[30] Hara M R, Agrawal N, Kim S F, et al. Snitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat Cell Biol, 2005, 7 (7):665674. 
[31] Wang Y Q, Feechan A, Yun B W, et al. Snitrosylation of AtSABP3 antagonizes the expression of plant immunity. J Biol Chem, 2009, 284 (4):21312137. 
[32] RomeroPuertas M C, Laxa M, Matte A, et al. Snitrosylation of peroxiredoxin II E promotes peroxynitritemediated tyrosine nitration. Plant Cell, 2007, 19 (12):41204130. 
[33] Zeidler D, Zahringer U, Gerber I, et al. Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc Natl Acad Sci U S A, 2004, 101 (44):1581115816. 
[34] Crawford N M, Tischner R, Heimer Y M,et al.Plant nitric oxide synthase: back to square one. Trends in Plant Science, 2006, 11 (11):526527. 
[35] Moreau M, Lee G I, Wang Y, et al. AtNOS/AtNOA1 is a functional Arabidopsis thaliana cGTPase and not a nitricoxide synthase. J Biol Chem, 2008, 283 (47):3295732967. 
[36] Richardson G, Benjamin N. Potential therapeutic uses for Snitrosothiols. Clin Sci, 2002, 102 (1):99105. 
[37] Rocks S A, Davies C A, Hicks S L, et al. Measurement of Snitrosothiols in extracellular fluids from healthy human volunteers and rheumatoid arthritis patients, using electron paramagnetic resonance spectrometry. Free Radic Biol Med, 2005, 39 (7):937948. 
[38] Boullerne A I, Rodriguez J J, Touil T, et al. AntiSnitrosocysteine antibodies are a predictive marker for demyelination in experimental autoimmune encephalomyelitis: implications for multiple sclerosis. J Neurosci, 2002, 22 (1):123132. 
[39] Liu L, Hausladen A, Zeng M, et al. A metabolic enzyme for Snitrosothiol conserved from bacteria to humans. Nature, 2001, 410 (6827):490494. 
[40] Feechan A, Kwon E, Yun B W, et al. A central role for Snitrosothiols in plant disease resistance. Proc Natl Acad Sci U S A, 2005, 102 (22):80548059. 
[41] Rusterucci C, Espunya M C, Diaz M, et al. Snitrosoglutathione reductase affords protection against pathogens in Arabidopsis, both locally and systemically. Plant Physiol, 2007, 143 (3):12821292. 
[42] Derakhshan B, Hao G, Gross S S. Balancing reactivity against selectivity: the evolution of protein Snitrosylation as an effector of cell signaling by nitric oxide. Cardiovasc Res, 2007, 75 (2):210219. 
[43] Broillet M C. Snitrosylation of proteins. Cell Mol Life Sci, 1999, 55 (89):10361042. 
[44] Benhar M, Stamler J S. A central role for Snitrosylation in apoptosis. Nat Cell Biol, 2005, 7 (7):645646. 
[45] Wang Y, Liu T, Wu C, et al. A strategy for direct identification of protein Snitrosylation sites by quadrupole timeofflight mass spectrometry. J Am Soc Mass Spectrom, 2008, 19 (9):13531360. 
[46] RomeroPuertas M C, Campostrini N, Matte A, et al. Proteomic analysis of Snitrosylated proteins in Arabidopsis thaliana undergoing hypersensitive response. Proteomics, 2008, 8 (7):14591469.

[1] 张洪艳, 王文霞, 尹恒, 卢航, 赵小明, 杜昱光. 壳寡糖诱导植物防御反应中一氧化氮信号的研究[J]. 中国生物工程杂志, 2011, 31(02): 18-22.
[2] 金慧 栾雨时. 转录因子在植物抗病基因工程中的研究进展[J]. 中国生物工程杂志, 2010, 30(10): 0-0.
[3] 金慧, 栾雨时. 转录因子在植物抗病基因工程中的研究进展[J]. 中国生物工程杂志, 2010, 30(10): 94-99.
[4] 牛颜冰, 青玲, 周雪平. RNA沉默机制及其抗病毒应用[J]. 中国生物工程杂志, 2004, 24(2): 76-79.
[5] 陈士云, 宋冬林, 杨宝玉. 诱导植物抗病的几种化合物及其抗病机理[J]. 中国生物工程杂志, 2003, 23(9): 40-44.
[6] 尉万聪, 李润植. 一氧化氮在植物抗病反应中的信号作用[J]. 中国生物工程杂志, 2001, 21(1): 25-28.
[7] 翟文学, 朱立煌. 植物抗病基因的克隆与分子育种[J]. 中国生物工程杂志, 1996, 16(1): 17-21.
[8] 刘进元, 余荔华. 植物抗病基因工程的研究进展[J]. 中国生物工程杂志, 1994, 14(2): 31-34.