Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2011, Vol. 31 Issue (8): 40-46    
研究报告     
甲烷氧化菌素的产生和铜捕获作用
辛嘉英1,2, 董静1, 闫超泽1, 乔君1, 梁洪野1, 夏春谷2
1. 哈尔滨商业大学食品科学与工程省重点实验室 哈尔滨 150076;
2. 中国科学院兰州化学物理研究所羰基合成与选择氧化国家重点实验室 兰州 730000
Production and Copper Acquisition Ability of Methanobactin
XIN Jia-ying1,2, DONG Jing1, YAN Chao-zhe1, QIAO Jun1, LIANG Hong-ye1, XIA Chun-gu2
1. Key Laboratory for Food Science and Engineering,Harbin University of Commerce,Harbin 150076,China;
2. State Key Laboratory for Oxo Synthesis and Selective Oxidation,Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences,Lanzhou 730000,China
 全文: PDF(819 KB)   HTML
摘要:

甲烷氧化菌素(mb)是由甲烷氧化菌产生的与铜捕获和吸收有关的生物螯合剂。采用NMS/CAS-Cu劈半平板法检测发现甲基弯菌 Methylosinus trichosporium IMV3011在以甲烷和甲醇为碳源时均具有向外界分泌mb的能力。甲基弯菌 Methylosinus trichosporium IMV3011在限铜胁迫下能够在培养介质中积累mb,甲醇为碳源时mb的积累量明显高于甲烷为碳源时mb的积累量,推测mb的合成与细胞中NADH含量有关。mb的专一性研究发现从甲基弯菌 Methylosinus trichosporium IMV3011发酵上清液中分离到的mb能够提高其它3种甲烷氧化菌由无铜培养基向含铜培养基转移时的pMMO活性的表达,并明显缩短它们由无铜培养基转移到含铜培养基时生长的延滞期,提高生长速度。表明其它3种甲烷氧化菌同样能够吸收来自于甲基弯菌Methylosinus trichosporium IMV3011的mb捕获的铜。

关键词: 甲烷氧化菌素铜捕获劈半平板法颗粒性甲烷单加氧酶甲烷氧化菌    
Abstract:

Methanobactin(mb)is biochelator that appears to function as an agent for copper acquisition and uptake in methanotrophs. The production of mb during growth of Methylosinus trichosporium IMV 3011 on methane and methanol was determined by split nitrate mineral salts/CAS-Cu(chrome azurol S)plates. mb was found to be accumulated in the spent medium of Methylosinus trichosporium IMV 3011 under copper-limited condition. The mb production ability of methanol-grown cells were obviously higher than that of methane-grown cells. It has been speculated that methanol can act as the electron-donating substrate to regenerate the NADH and drive mb synthesis. The effect of mb from Methylosinus trichosporium IMV3011 on the growth lag,growth rate and whole-cell pMMO(particles Methane Monooxygenase)activity of other methanotrophs were measured respectively to assess the specifity of mb. It has been shown that mb from Methylosinus trichosporium IMV 3011 can accelerate the expression of whole cell pMMO activity of other methanotrophs when cultures are exposed to elevatory copper concentration. Also,mb from Methylosinus trichosporium IMV 3011 can shorten the growth lag and increase the growth rate of other methanotrophs either in elevatory or constant copper concentration. The results suggested that other methanotroph may take delivery of copper from mb released by Methylosinus trichosporium IMV 3011.

Key words: Methanobactin    Copper acquisition    Split plates    Particles methane monooxygenase    Methanotrophs
收稿日期: 2011-03-14 出版日期: 2011-08-25
ZTFLH:  Q819  
基金资助:

国家自然科学基金( 20873034; 21073050)、黑龙江省教育厅重点项目(11551z 007)资助项目

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

辛嘉英, 董静, 闫超泽, 乔君, 梁洪野, 夏春谷. 甲烷氧化菌素的产生和铜捕获作用[J]. 中国生物工程杂志, 2011, 31(8): 40-46.

XIN Jia-ying, DONG Jing, YAN Chao-zhe, QIAO Jun, LIANG Hong-ye, XIA Chun-gu. Production and Copper Acquisition Ability of Methanobactin. China Biotechnology, 2011, 31(8): 40-46.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2011/V31/I8/40


[1] Murrell J C,McDonald I R,Gilbert B. Regulation of expression of methane monooxygenases by copper ions. Trends in Microbiology,2000,8(5):221-225.

[2] 梁战备,史奕,岳进.甲烷氧化菌研究进展 生态学杂志,2004,23(05):198-205. Ling Z B,Shi Y,Yue J.Chinese J of Ecology,2004,23(05):198-205.

[3] Balasubramanian R, Rosenzweig A C.Copper methanobactin:a molecule whose time has come.Current Opinion in Chemical Biology,2008,12:245-249.

[4] Kim H J,Graham D W,DiSpirito A A,et al. Methanobactin,a copper-acquisition compound from methane-oxidizing bacteria,Science,2004,305(5690):1612-1615.

[5] Choi D W,Semrau J D,Antholine W E,et al. Oxidase,superoxide dismutase,and hydrogen peroxide reductase activities of methanobactin from types I and II methanotrophs.Journal of Inorganic Biochemistry,2008,102(8):1571-1580.

[6] Xin J Y,Cui J R,Chen J B,et al. Continuous biocatalytic synthesis of epoxypropane using a biofilm reactor,Process Biochemistry,2003,38(12):1739-1746.

[7] Xing X H,Wu H,Luo M F,et al. Effects of organic chemicals on growth of Methylosinus trichosporium OB3b,Biochemical Engineering Journal,2006,31(2):113-117.

[8] Park S,Hanna L,Taylor R T,et al.Batch cultivation of Methylosinus trichosporium OB3b:I. Production of soluble methane monooxygenase.Biotechnology and Bioengineering,1991,38(4)423-433.

[9] Yoon S,Kraemer S M,DiSpirito A A,et al.An assay for screening microbial cultures for chalkophore production,Environmental Microbiology Reports,2010,2(2):295-303.

[10] Choi D W,Bandow N L,McEllistrem M T,et al.Spectral and thermodynamic properties of methanobactin from γ-proteobacterial methane oxidizing bacteria:A case for copper competition on a molecular level,Journal of Inorganic Biochemistry,2010,104(12):1240-1247.

[11] Choi D W,Antholine W E,Do Y S. Effect of methanobactin on the activity and electron paramagnetic resonance spectra of the membrane-associated methane monooxygenase in Methylococcus capsulatus Bath.Microbiology,2005,151(10):3417-3426.

[12] Pesch M L,Christl I,Barmettler K,et al.Isolation and purification of Cu-free methanobactin from Methylosinus trichosporium OB3b,Geochemical Transactions,2011,12(1):2-11.

[13] Chu K H,Alvarez-Cohen L.Effect of nitrogen source on growth and trichloroethylene degradation by methane-oxidizing bacteria,Applied and Environmental Microbiology,1998,64(9):3451-3457.

[14] Xin J Y,Zhang Y X,Dong J,et al,Epoxypropane biosynthesis by whole cell suspension of methanol-growth Methylosinus trichosporium IMV 3011.World J Microbiol Biotechnol,2010,26(4):701-708.

[15] Kim H J,Galeva N,Larive C K,et al. Purification and physical-chemical properties of methanobactin:A chalkophore from methylosinus trichosporium OB3b,Biochemistry,2005,44(13):5140-5148.

[16] Behling L A,Hartsel S C,Lewis D E,et al. NMR,mass spectrometry and chemical evidence reveal a different chemical structure for methanobactin that contains oxazolone rings,Journal of the American Chemical Society,2008,130(38):12604-12605.

[1] 吴庆, 刘慧燕, 方海田, 何建国, 贺晓光, 于丽男, 王梦娇. 解淀粉芽孢杆菌高效合成胞苷的代谢调控机制及育种策略[J]. 中国生物工程杂志, 2015, 35(9): 122-127.
[2] 王洪苏, 关桂静, 刘金香. Alexa Fluor荧光标记在细胞学和分子生物学研究中的应用[J]. 中国生物工程杂志, 2015, 35(9): 71-77.
[3] 周立军, 刘文娟, 祁永浩, 李妙. SOCS3通过JNK和STAT3信号通路调控AKT[J]. 中国生物工程杂志, 2015, 35(9): 50-56.
[4] 梁高峰, 何向峰, 陈宝安. miRNA在肿瘤分子诊断和治疗中的研究进展[J]. 中国生物工程杂志, 2015, 35(9): 57-65.
[5] 尉研, 王焕琴, 吴萌, 张凤娟, 梁国栋, 朱武洋. 黄病毒检测工程细胞系的构建及功能鉴定[J]. 中国生物工程杂志, 2015, 35(9): 35-41.
[6] 赵央, 田海山, 李校堃, 姜潮. 成纤维细胞生长因子20研究进展[J]. 中国生物工程杂志, 2015, 35(8): 103-108.
[7] 李洪昌, 袁林, 张令强. 抑癌基因PTEN转基因小鼠的构建及表型初步分析[J]. 中国生物工程杂志, 2015, 35(8): 1-8.
[8] 郭玮婷, 张慧, 查东风, 黄汉峰, 黄静, 高红亮, 常忠义, 金明飞, 鲁伟. 产耐高温谷氨酰胺转胺酶菌株的快速筛选方法[J]. 中国生物工程杂志, 2015, 35(8): 83-89.
[9] 康学军, 杨怡姝. HIV-1潜伏感染体外实验模型研究进展[J]. 中国生物工程杂志, 2015, 35(8): 96-102.
[10] 朱志坚, 连凯琪, 杨帆, 张伟, 郑海学, 杨孝朴. 稳定表达鼠源整联蛋白αvβ6的CHO-677细胞系的构建[J]. 中国生物工程杂志, 2015, 35(8): 23-29.
[11] 黄鹏, 李文姝, 谢君, 鲍建瑛, 曹晓娥, 余龙, 徐一新. 人源类溶菌酶蛋白6在毕赤酵母中的重组表达及活性分析[J]. 中国生物工程杂志, 2015, 35(8): 30-37.
[12] 任琴, 郭志鸿, 王亚军, 谢忠奎, 王若愚. RNA干扰及其在增强作物抵抗有害真核生物研究中的应用[J]. 中国生物工程杂志, 2015, 35(6): 80-89.
[13] 张超, 项丽娜, 陈德培, 吕鑫鑫, 赵宜桐, 王璐瑶, 肖健, 张宏宇. 碱性成纤维细胞生长因子促进神经损伤修复的研究进展[J]. 中国生物工程杂志, 2015, 35(6): 75-79.
[14] 贾翠丽, 张华伟, 王斌斌, 朱宏吉, 乔建军. 革兰氏阳性菌自然感受态生理机制的研究进展[J]. 中国生物工程杂志, 2015, 35(6): 90-100.
[15] 李佳鑫, 冯炜, 王志钢, 王彦凤. CRISPR/Cas9技术及其在转基因动物中的应用[J]. 中国生物工程杂志, 2015, 35(6): 109-115.