Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2011, Vol. 31 Issue (7): 114-120    
综述     
肌源干细胞可塑性研究进展
武晓云, 王世立
山东省医药生物技术研究中心 国家卫生部生物技术药物重点实验室 济南 250062
Progress on the Plasticity of Muscle-derived Stem Cell
WU Xiao-yun, WANG Shi-li
Key Laboratory of Biotech-Drugs, Ministry of Health, Shandong Medicinal Biotechnology Center, Jinan 250062, China
 全文: PDF(450 KB)   HTML
摘要:

目前已证实肌肉中至少存在两种干细胞:肌卫星细胞和肌源干细胞。肌源干细胞被认为是卫星细胞的前体细胞,具有较高的增殖能力、更好的细胞生存能力和更宽的分化能力。肌源干细胞不仅能够分化成血、肌肉、脂肪、骨、软骨、内皮等中胚层细胞,而且也能打破胚层限制分化成外胚层和内胚层细胞。文章对肌源干细胞的分离纯化、鉴定、可塑性及临床应用做一综述。

关键词: 肌源干细胞可塑性分离分化基因治疗组织再生    
Abstract:

Two types of stem cells in muscle: satellite cells and muscle-derived stem cells (MDSCs) have been identified. MDSCs, a predecessor of the satellite cell, are considered to possess a higher regeneration capacity and to exhibit better cell survival and a broader range of multilineage capabilities. MDSCs are not only able to differentiate into mesodermal cell types including the myogenic, adipogenic, osteogenic, chondrogenic, endothelial, and hematopoietic lineages, but also possess the potential to break germ layer commitment and differentiate into ectodermal and endodermal lineages under certain conditions. The progress on isolation, identification, plasticity, and the current clinical applications of MDSCs are reviewed.

Key words: Muscle-derived stem cells    Plasticity    Isolation    Differentiation    Gene therapy    Tissue regeneration
收稿日期: 2010-09-21 出版日期: 2011-07-25
ZTFLH:  Q2  
基金资助:

国家自然科学基金(30900381)、军队医药卫生"十一五"基金(09MA026)、毫米波国家重点实验室开放课题(K200909)资助项目

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
武晓云
王世立

引用本文:

武晓云, 王世立. 肌源干细胞可塑性研究进展[J]. 中国生物工程杂志, 2011, 31(7): 114-120.

WU Xiao-yun, WANG Shi-li. Progress on the Plasticity of Muscle-derived Stem Cell. China Biotechnology, 2011, 31(7): 114-120.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2011/V31/I7/114


[1] Wu X, Wang S, Chen B, et al. Muscle-derived stem cells: isolation, characterization, differentiation, and application in cell and gene therapy. Cell Tissue Res, 2010, 340(3):549-567.

[2] Vourch P, Romero-Ramos M, Chivatakarn O, et al. Isolation and characterization of cells with neurogenic potential from adult skeletal muscle. Biochem Biophys Res Commun, 2004, 317(3):893-901.

[3] Arsic N, Mamaeva D, Lamb N J, et al. Muscle-derived stem cells isolated as non-adherent population give rise to cardiac, skeletal muscle and neural lineages. Exp Cell Res, 2008, 314(6):1266-1280.

[4] Gharaibeh B, Lu A, Tebbets J, et al. Isolation of a slowly adhering cell fraction containing stem cells from murine skeletal muscle by the preplate technique. Nat Protoc, 2008, 3(9):1501-1509.

[5] Wei Y, Li Y, Chen C, et al. Human skeletal muscle-derived stem cells retain stem cell properties after expansion in myosphere culture. Exp Cell Res, 2011, 317(7):1016-1027.

[6] Sherwood R I, Christensen J L, Conboy I M, et al. Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle. Cell, 2004, 119(4):543-554.

[7] Bauermeister K T, Stolting S, Kaczmarek P M, et al. Hematopoietic progenitor cells residing in muscle engraft into bone marrow following transplantation. Int J Hematol, 2004, 79(5):488-494.

[8] Tsuboi K, Kawada H, Toh E, et al. Potential and origin of the hematopoietic population in human skeletal muscle. Leuk Res, 2005, 29(3):317-324.

[9] McKinney-Freeman S L, Jackson K A, Camargo F D, et al. Muscle-derived hematopoietic stem cells are hematopoietic in origin. Proc Natl Acad Sci U S A, 2002, 99(3):1341-1346.

[10] Jiang Y, Vaessen B, Lenvik T, et al. Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol, 2002, 30(8):896-904.

[11] Jiang Y, Jahagirdar B N, Reinhardt R L, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002, 418(6893):41-49.

[12] Ji K H, Xiong J, Hu K M, et al. Simultaneous expression of Oct4 and genes of three germ layers in single cell-derived multipotent adult progenitor cells. Ann Hematol, 2008, 87(6):431-438.

[13] Aranguren X L, Luttun A, Clavel C, et al. In vitro and in vivo arterial differentiation of human multipotent adult progenitor cells. Blood, 2007, 109(6):2634-2642.

[14] Zhong J F, Zhan Y, Anderson W F, et al. Murine hematopoietic stem cell distribution and proliferation in ablated and nonablated bone marrow transplantation. Blood, 2002, 100(10):3521-3526.

[15] Negroni E, Riederer I, Chaouch S, et al. In vivo myogenic potential of human CD133(+) muscle-derived stem cells: a quantitative study. Mol Ther, 2009.

[16] Tamaki T, Akatsuka A, Ando K, et al. Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle. J Cell Biol, 2002, 157(4):571-577.

[17] Tamaki T, Uchiyama Y, Okada Y, et al. Functional recovery of damaged skeletal muscle through synchronized vasculogenesis, myogenesis, and neurogenesis by muscle-derived stem cells. Circulation, 2005, 112(18):2857-2866.

[18] Tamaki T, Okada Y, Uchiyama Y, et al. Synchronized reconstitution of muscle fibers, peripheral nerves and blood vessels by murine skeletal muscle-derived CD34(-)/45 (-) cells. Histochem Cell Biol, 2007, 128(4):349-360.

[19] Sacco A, Doyonnas R, Kraft P, et al. Self-renewal and expansion of single transplanted muscle stem cells. Nature, 2008, 456(7221):502-506.

[20] Seaberg R M, Smukler S R, Kieffer T J, et al. Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol, 2004, 22(9):1115-1124.

[21] Tamaki T, Okada Y, Uchiyama Y, et al. Clonal multipotency of skeletal muscle-derived stem cells between mesodermal and ectodermal lineage. Stem Cells, 2007, 25(9):2283-2290.

[22] Tamaki T, Okada Y, Uchiyama Y, et al. Skeletal muscle-derived CD34+/45-and CD34-/45-stem cells are situated hierarchically upstream of Pax7+ cells. Stem Cells Dev, 2008, 17(4):653-667.

[23] Tamaki T, Akatsuka A, Okada Y, et al. Cardiomyocyte formation by skeletal muscle-derived multi-myogenic stem cells after transplantation into infarcted myocardium. PLoS One, 2008, 3(3):e1789.

[24] Tamaki T, Uchiyama Y, Okada Y, et al. Clonal Differentiation of Skeletal Muscle-Derived CD34-/45-Stem Cells into Cardiomyocytes in vivo. Stem Cells Dev, 2009.

[25] Zheng B, Cao B, Crisan M, et al. Prospective identification of myogenic endothelial cells in human skeletal muscle. Nat Biotechnol, 2007, 25(9):1025-1034.

[26] Gerald A. The heterogeneity of clonally derived purified murine marrow stem cell colonies. Blood, 2005.

[27] Wright V, Peng H, Usas A, et al. BMP4-expressing muscle-derived stem cells differentiate into osteogenic lineage and improve bone healing in immunocompetent mice. Mol Ther, 2002, 6(2):169-178.

[28] Usas A, Ho A M, Cooper G M, et al. Bone regeneration mediated by BMP4-expressing muscle-derived stem cells is affected by delivery system. Tissue Eng Part A, 2009, 15(2):285-293.

[29] Shen H C, Peng H, Usas A, et al. Ex vivo gene therapy-induced endochondral bone formation: comparison of muscle-derived stem cells and different subpopulations of primary muscle-derived cells. Bone, 2004, 34(6):982-992.

[30] Adachi N, Sato K, Usas A, et al. Muscle derived, cell based ex vivo gene therapy for treatment of full thickness articular cartilage defects. J Rheumatol, 2002, 29(9):1920-1930.

[31] Goldring M B. Are bone morphogenetic proteins effective inducers of cartilage repair? Ex vivo transduction of muscle-derived stem cells. Arthritis Rheum, 2006, 54(2):387-389.

[32] Payne T R, Oshima H, Sakai T, et al. Regeneration of dystrophin-expressing myocytes in the mdx heart by skeletal muscle stem cells. Gene Ther, 2005, 12(16):1264-1274.

[33] Ikezawa M, Cao B, Qu Z, et al. Dystrophin delivery in dystrophin-deficient DMDmdx skeletal muscle by isogenic muscle-derived stem cell transplantation. Hum Gene Ther, 2003, 14(16):1535-1546.

[34] Baek Y S, Kang S H, Park J S, et al. Long-term cultured skeletal muscle-derived neural precursor cells and their neurogenic potentials. Neuroreport, 2009, 20(12):1109-1114.

[35] Schultz S S, Lucas P A. Human stem cells isolated from adult skeletal muscle differentiate into neural phenotypes. J Neurosci Methods, 2006, 152(1-2):144-155.

[36] Allan D S, Jay K E, Bhatia M. Hematopoietic capacity of adult human skeletal muscle is negligible. Bone Marrow Transplant, 2005, 35(7):663-666.

[37] Farace F, Prestoz L, Badaoui S, et al. Evaluation of hematopoietic potential generated by transplantation of muscle-derived stem cells in mice. Stem Cells Dev, 2004, 13(1):83-92.

[38] Bueno D F, Kerkis I, Costa A M, et al. New source of muscle-derived stem cells with potential for alveolar bone reconstruction in cleft lip and/or palate patients. Tissue Eng Part A, 2009, 15(2):427-435.

[39] Kim K S, Lee J H, Ahn H H, et al. The osteogenic differentiation of rat muscle-derived stem cells in vivo within in situ-forming chitosan scaffolds. Biomaterials, 2008, 29(33):4420-4428.

[40] Corsi K A, Pollett J B, Phillippi J A, et al. Osteogenic potential of postnatal skeletal muscle-derived stem cells is influenced by donor sex. J Bone Miner Res, 2007, 22(10):1592-1602.

[41] Kubo S, Cooper G M, Matsumoto T, et al. Blocking vascular endothelial growth factor with soluble Flt-1 improves the chondrogenic potential of mouse skeletal muscle-derived stem cells. Arthritis Rheum, 2009, 60(1):155-165.

[42] Matsumoto T, Cooper G M, Gharaibeh B, et al. Cartilage repair in a rat model of osteoarthritis through intraarticular transplantation of muscle-derived stem cells expressing bone morphogenetic protein 4 and soluble Flt-1. Arthritis Rheum, 2009, 60(5):1390-1405.

[43] Claros S, Alonso M, Becerra J, et al. Selection and induction of rat skeletal muscle-derived cells to the chondro-osteogenic lineage. Cell Mol Biol (Noisy-le-grand), 2008, 54(1):1-10.

[44] Kondo T, Case J, Srour E F, et al. Skeletal muscle-derived progenitor cells exhibit neural competence. Neuroreport, 2006, 17(1):1-4.

[45] Arriero M, Brodsky S V, Gealekman O, et al. Adult skeletal muscle stem cells differentiate into endothelial lineage and ameliorate renal dysfunction after acute ischemia. Am J Physiol Renal Physiol, 2004, 287(4):F621-627.

[46] Nieponice A, Soletti L, Guan J, et al. Development of a tissue-engineered vascular graft combining a biodegradable scaffold, muscle-derived stem cells and a rotational vacuum seeding technique. Biomaterials, 2008, 29(7):825-833.

[47] Zhou C, Zhang C. Cell therapy for Duchenne muscular dystrophy. Zhonghua Yi Xue Yi Chuan Xue Za Zhi, 2006, 23(6):659-661.

[48] Chaouch S, Mouly V, Goyenvalle A, et al. Immortalized skin fibroblasts expressing conditional MyoD as a renewable and reliable source of converted human muscle cells to assess therapeutic strategies for muscular dystrophies: validation of an exon-skipping approach to restore dystrophin in duchenne muscular dystrophy cells. Hum Gene Ther, 2009, 20(7):784-790.

[49] Smaldone M C, Chancellor M B. Muscle derived stem cell therapy for stress urinary incontinence. World J Urol, 2008, 26(4):327-332.

[50] Kwon D, Kim Y, Pruchnic R, et al. Periurethral cellular injection: comparison of muscle-derived progenitor cells and fibroblasts with regard to efficacy and tissue contractility in an animal model of stress urinary incontinence. Urology, 2006, 68(2):449-454.

[51] Furuta A, Jankowski R J, Pruchnic R, et al. The potential of muscle-derived stem cells for stress urinary incontinence. Expert Opin Biol Ther, 2007, 7(10):1483-1486.

[52] Smaldone M C, Chen M L, Chancellor M B. Stem cell therapy for urethral sphincter regeneration. Minerva Urol Nefrol, 2009, 61(1):27-40.

[1] 赵晓煜,徐祺玲,赵晓东,安云飞. 基因治疗慢病毒载体的转导增强策略*[J]. 中国生物工程杂志, 2021, 41(8): 52-58.
[2] 刘天义,冯卉,SALSABEELYousuf,解领丽,苗向阳. lncRNA在动物脂肪沉积中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 82-88.
[3] 赵久梅,王哲,李学英. 调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的作用*[J]. 中国生物工程杂志, 2021, 41(10): 62-72.
[4] 邱金戈,刘德武,孙宝丽,李耀坤,郭勇庆,邓铭,柳广斌. 动物外泌体分离方法的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 36-42.
[5] 杨娜,吴群,徐岩. 解淀粉芽孢杆菌合成surfactin的发酵策略优化 *[J]. 中国生物工程杂志, 2020, 40(7): 51-58.
[6] 陈飞,王晓冰,徐增辉,钱其军. 干细胞改善糖尿病的分子机制及临床研究进展[J]. 中国生物工程杂志, 2020, 40(7): 59-69.
[7] 辜浩,郭鑫宇,堵晶晶,张锫文,王定国,廖坤,张顺华,朱砺. MiR-186-5p对3T3-L1前脂肪细胞增殖分化的影响研究 *[J]. 中国生物工程杂志, 2020, 40(3): 21-30.
[8] 徐应永. 基因治疗产品的开发现状与挑战[J]. 中国生物工程杂志, 2020, 40(12): 95-103.
[9] 潘炳菊,张宛怡,申会涛,刘婷婷,李中媛,罗学刚,宋亚囝. 甘露寡糖分离纯化研究进展*[J]. 中国生物工程杂志, 2020, 40(11): 90-95.
[10] 陈庆宇,王鲜忠,张姣姣. 基因技术在治疗2型糖尿病中的应用*[J]. 中国生物工程杂志, 2020, 40(11): 73-81.
[11] 胡妍,李辉,何承文,朱婧,谢志平. 酵母亚细胞结构分离效率评估菌株的构建 *[J]. 中国生物工程杂志, 2020, 40(10): 10-23.
[12] 杭海英,刘春春,任丹丹. 流式细胞术的发展、应用及前景 *[J]. 中国生物工程杂志, 2019, 39(9): 68-83.
[13] 朱颖,范梦恬,李具琼,陈彬,张盟浩,吴静红,施琼. 趋化因子受体CX3CR1调控人主动脉瓣膜间质细胞成骨分化的作用研究 *[J]. 中国生物工程杂志, 2019, 39(8): 7-16.
[14] 封金云,宿玲恰,吴敬. 多酶复配合成海藻糖及其分离提取的研究 *[J]. 中国生物工程杂志, 2019, 39(7): 65-70.
[15] 程瑜,施琼,安利钦,范梦恬,皇改改,翁亚光. BMP7基因沉默抑制钙盐诱导猪主动脉瓣膜间质细胞成骨分化 *[J]. 中国生物工程杂志, 2019, 39(5): 63-71.