Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2011, Vol. 31 Issue (7): 85-90    
研究报告     
利用固定化重组大肠杆菌细胞生产D-塔格糖
付凤根, 徐铮, 李贵祥, 李莎, 冯小海, 徐虹
南京工业大学食品与轻工学院 材料化学工程国家重点实验室 南京 210009
D-tagatose Production Utilizing Immobilized Recombinant Escherichia coli cells
FU Feng-gen, XU Zheng, LI Gui-xiang, LI Sha, FENG Xiao-hai, XU Hong
State Key Laboratory of Materials-Oriented Chemical Engineering,College of Food Science and Light Industry, Ningjing University of Technology,Nanjing 210009,China
 全文: PDF(635 KB)   HTML
摘要:

利用经海藻酸钙包埋的重组大肠杆菌细胞催化D-半乳糖生产D-塔格糖,考察了细胞包埋量、反应条件对固定化细胞催化效率以及对D-塔格糖生产稳定性的影响。确定的最优转化条件为:温度65℃,pH 6.5,添加终浓度为1 mmol/L Mn2+,底物(D-半乳糖)浓度100 g/L,重组大肠杆菌细胞用量40 g/L。固定化小球在0.3%戊二醛溶液中交联30 min可以显著提高其在高温下的机械强度。考察了异构化反应体系中硼酸与底物间的摩尔比对产率的影响。研究结果表明,添加适量的硼酸可以改变原有的化学反应平衡,实现D-塔格糖的高产。利用D-半乳糖为底物在最优的反应条件下催化24 h,固定化细胞对D-半乳糖的转化率最高,可达65.8%,连续转化8批次的平均转化率为60.6%,为工业化生产D-塔格糖奠定了基础。

关键词: D-塔格糖固定化细胞重组大肠杆菌硼酸L-阿拉伯糖异构酶    
Abstract:

Recombinant E.coli cells were immobilized with calcium alginate for the isomerization of D-galactose to D-tagatose. The influences of immobilization process and reaction conditions on the catalytic efficiency and D-tagatose production stability of the immobilized cells are investigated. The optimal conditions were as follows: the temperature, pH and mental ion were 65℃,6.5 and 1mmol/L Mn2+, respectively. The optimal substrate (D-galactose) and cell concentrations of 100 g/L and 40 g/L were selected, respectively. Stability of the alginate beads under high temperatures was enhanced after cross-linked by 0.3% glutaraldehyde for 30min. The effect of molar ratio between borate and substrate on isomerization was studied, it was found that borate could change the initial chemical equilibrium of D-galactose isomerization and lead to a high production of D-tagatose. After conversion for 24h, the highest conversion rate for D-tagatose using D-galactose as the substrate reached to 65.8% by immobilized recombinant E.coli cells, and the average conversion rate of eight repeated batch conversions was 60.6%, which laid the foundation for industrial production of D-tagatose.

Key words: D-tagatose    Immobilized cells    Recombinant E.coli    Borate    L-arabinose isomerase
收稿日期: 2011-03-17 出版日期: 2011-07-25
ZTFLH:  Q784  
基金资助:

中央级公益性科研院所基本科研业务费专项资金项目(B2F100306)

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
付凤根
徐铮
李贵祥
李莎
冯小海
徐虹

引用本文:

付凤根, 徐铮, 李贵祥, 李莎, 冯小海, 徐虹. 利用固定化重组大肠杆菌细胞生产D-塔格糖[J]. 中国生物工程杂志, 2011, 31(7): 85-90.

FU Feng-gen, XU Zheng, LI Gui-xiang, LI Sha, FENG Xiao-hai, XU Hong. D-tagatose Production Utilizing Immobilized Recombinant Escherichia coli cells. China Biotechnology, 2011, 31(7): 85-90.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2011/V31/I7/85


[1] Kim P. Current studies on biological tagatose production using L-arabinose isomerase: a review and future perspective. Applied Microbiology and Biotechnology, 2004, 65(3): 243-249.


[2] Yoon S H, Kim P, Oh D K. Properties of L-arabinose isomerase from Escherichia coli as biocatalysis for tagatose production. World J Microbiol Biotechnol, 2003, 19(1): 47-51.


[3] Zhang H, Jiang B, Pan B. Purification and characterization of L-arabinose isomerase from Lactobacillus plantarum production D-tagatose. World J Microbiol Biotechnol, 2007, 23(5): 641-646.


[4] Lee D W, Jang H J, Choe E A, et al. Characterization of a thermostable L-arabinose (D-galactose) isomerase from the hyperthermophilic eubacterium Thermotoga maritima. Appl Environ Microbiol,2004, 70(3): 1397-1404.


[5] Kim B C, Lee Y H, Lee H S, et al. Cloning,expression and characterization of L-arabinose isomerase from Thermotoga neapolitana:bioconversion of D-galactose to D-tagatose using the enzyme. FEMS Microbiol Lett, 2002, 212: 121-126.


[6] Oh D K, Kim H J, Kim P, et al. Development of an immobilization method of L-arabinose isomerase for industrial production of tagatose. Biotechnology Letters, 2001, 23(22): 1859-1862.


[7] Jung E S, Kim H J, et al. Tagatose production by immobilized recombinant Escherichia coli cells containing Geobacillus stearothermophilus L-arabinose isomerase mutant in a packed-bed bioreactor. Biotechnology Progress, 2005, 21(4): 1335-1340.


[8] Kozempel M, Mcaloon A, Roth L. Simulated scale-up and cost estimate of a process for alkaline isomerization of lactose to lactulose using boric acid as complexation agent. J of Chem Tech and Biotech, 1997, 68: 229-235.


[9] Hicks K B, Parrish F W. A new method for preparation of lactulose from lactose. Carbohydr Res, 1980, 82: 393-397.

[10] Helanto M, Kiviharju K, Leisola M, et al. Metabolic Engineering of Lactobacillus plantarum for Production of L-Ribulose. Appl Environ Microbiol, 2007, 73(21): 7083-7091.

[11] Dische Z, Borenfreund E. A new spectrophotometric method for the detection and determination of keto sugars and trioses. J Biol Chem, 1951, 192: 583-587.

[12] Cheng L F, Mu W M, Jiang B. Thermostable L-arabinose isomerase from Bacillus stearothermophilus IAM1101 for D-tagatose production:gene cloning, purification and characterisation. J of Science of Food and Agriculture, 2010, 90(8): 1372-1333.

[13] Lim B C, Kim H J, Oh D K, et al. High production of D-Tagatose by the addition of boric acid. Biotechnology Progress, 2007, 23(4): 824-828.

[14] Lee S J, Lee D W, Choe E A, et al. Characterization of a thermoacidophilic L-arabinose isomerase from Alicyclobacillus acidocaldarius:role of Lys-269 in pH optimum. Appl Environ Microbiol, 2005, 12: 7888-7896.

[15] Jorgensen F, Hansen O C, Stougaard P. Enzymatic conversion of d-galactose to d-tagatose: heterologous expression and characterisation of a thermostable L-arabinose isomerase from Thermoanaerobacter mathranii. Appl Micobiol Biotechnol, 2004, 64: 816-822.

[16] Englesberg E. Enzymatic characterization of 17 L-arabinose negative mutants of Escherichia coli. Appl Environ Microbiol, 1961, 81: 996-1006.

[17] Kim H J, Ryu S A, Kim P, et al. A feasible enzymatic process for D-tagatose production by an immobilized Thermostable L-arabinose isomerase in a packed-bed bioreactor. Biotechnol Prog, 2003, 19: 400-404.

[18] Hong Y H, Lee D W, Lee S J, et al. Production of D-tagatose at high temperatures using immobilized Escherichia coli cells expressing L-arabinose isomerase from Thermotoga neapolitana. Biotechnol Lett, 2007, 29: 569-574.

[1] 孙帆,宿玲恰,张康,吴敬. D-阿洛酮糖 3-差向异构酶在枯草芽孢杆菌中的高效表达及固定化细胞研究 *[J]. 中国生物工程杂志, 2018, 38(7): 83-88.
[2] 刘强, 徐晴, 李霜. 膜反应器固定化米根霉发酵产富马酸的工艺研究[J]. 中国生物工程杂志, 2014, 34(2): 93-97.
[3] 罗锋, 段绪果, 宿玲恰, 吴敬. Thermobifida fusca海藻糖合成酶基因的克隆表达及发酵优化[J]. 中国生物工程杂志, 2013, 33(8): 98-104.
[4] 何洁, 宿玲恰, 吴敬. 重组大肠杆菌产Streptomyces sp. FA1来源木聚糖酶的摇瓶发酵优化[J]. 中国生物工程杂志, 2013, 33(2): 41-46.
[5] 纪丽萍, 吴丹, 吴敬, 陈坚. 重组大肠杆菌产γ-环糊精葡萄糖基转移酶的摇瓶发酵优化[J]. 中国生物工程杂志, 2011, 31(10): 50-56.
[6] 权国燕, 方慧英, 诸葛斌, 张波, 姚佳佳, 诸葛健. 甘油脱水酶再激活因子提高重组大肠杆菌3-羟基丙酸合成能力[J]. 中国生物工程杂志, 2011, 31(06): 75-80.
[7] 鲍熹珺 魏东芝 沈亚领 周劲松 张国钧 孙菁 球谊. 提高重组TRAIL表达产率的优化策略[J]. 中国生物工程杂志, 2009, 29(10): 74-80.
[8] 张姝 王敏 韩梅琳 马荣才 陈强 高俊莲.
基因重组大肠杆菌表达HrpNEcc蛋白的发酵条件及诱导条件优化
[J]. 中国生物工程杂志, 2009, 29(10): 44-49.
[9] 王艳 辛嘉英. 生物降解萘的研究进展[J]. 中国生物工程杂志, 2009, 29(09): 0-0.
[10] 程丽芳,沐万孟,张涛,江波. Bacillus Stearothermophilus IAM 11001 L-阿拉伯糖异构酶在大肠杆菌中的表达、纯化及活性研究[J]. 中国生物工程杂志, 2008, 28(9): 52-55.
[11] 沐万孟,张涛,江波,张华. 稀有糖的生物转化生产策略:Izumoring方法[J]. 中国生物工程杂志, 2007, 27(7): 129-136.
[12] 张泉,朱鸿飞,于可响,薛方明,孙怀昌. 重组大肠杆菌碱裂解方法的改进[J]. 中国生物工程杂志, 2007, 27(2): 76-79.
[13] 杨晓娟 王玉建 李红玉 涂玮. 固定化氧化亚铁硫杆菌培养条件对黄铁矾沉淀的影响[J]. 中国生物工程杂志, 2007, 27(1): 64-68.
[14] 钟根深,石炳兴,王海东,蒋中华,吴祖泽. 表达重组葡激酶-水蛭素融合蛋白的大肠杆菌工程菌的高密度培养[J]. 中国生物工程杂志, 2006, 26(09): 11-15.
[15] 史悦, 于慧敏, 田卓玲, 沈忠耀. 产腈水合酶重组大肠杆菌的质粒稳定性研究[J]. 中国生物工程杂志, 2005, 25(8): 70-75.