Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2010, Vol. 30 Issue (05): 140-148    
综述     
酵母细胞甘油代谢与生理功能研究进展
陈献忠1,2,王正祥1,2,诸葛健1
1.江南大学工业生物技术教育部重点实验室 无锡 2141222
2.江南大学生物工程学院 生物资源与生物能源研究中心 无锡 214122
Progress in Glycerol Metabolism and its Physiological Function in Yeast Cells
CHEN Xian-zhong1,2,WANG Zheng-xiang1,2,ZHU Ge-jian1
1.Key Lab of Industrial Biotechnology, The Education Ministry, Jiangnan University, Wuxi 214122, China
2.Center for Bioresource & Bioenergy, School of Biotechnology, Jiangnan University, Wuxi 214122, China
 全文: PDF(1079 KB)   HTML
摘要:

甘油是酵母细胞生长代谢过程中常见的多元醇物质。尽管甘油的结构简单,代谢途径并不复杂,但是其在细胞内的生理功能十分重要。甘油代谢过程主要参与细胞的高渗透压生理调节和厌氧条件下的胞内氧化还原平衡调节。近年来许多学者在酵母细胞的甘油代谢及生理功能方面开展了深入的研究。在扼要介绍甘油生理代谢的基础上,重点阐述甘油代谢参与细胞高渗压甘油应答信号途径和氧化还原平衡调节的生理机制,同时就酵母细胞甘油合成的代谢工程进行归纳和评述。

关键词: 酵母细胞甘油代谢高渗压甘油途径氧化还原平衡    
Abstract:

Glycerol, a common polyol metabolite, is produced during yeast cells growth, propagation and glucose metabolism. Though glycerol structure and metabolic pathway is very simple, it plays an important physiological role in yeast cells, especially which are exposed in such stress conditions as hypertonic medium, frozen temperature and anaerobic environment. Glycerol metabolism is involved in osmoregulation and redox balance regulation. Recently, physiological function of glycerol in yeast, especially for Saccharomyces cerevisiae, were focused on and investigated widely. Glycerol metabolism was introduced succinctly, and the correlations of glycerol production and osmoregulation, redox balance are emphasized on. Moreover, metabolic engineering for glycerol biosynthesis and its future research prospects are discussed.

Key words: Saccharomyces cerevisiae    Glycerol metabolism    High osmotic glycerol pathway    Redox balance
收稿日期: 2009-12-16 出版日期: 2010-05-25
通讯作者: 陈献忠     E-mail: zxwang@jiangnan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈献忠
王正祥
诸葛健

引用本文:

陈献忠 王正祥 诸葛健. 酵母细胞甘油代谢与生理功能研究进展[J]. 中国生物工程杂志, 2010, 30(05): 140-148.

CHEN Xian-Zhong, WANG Zheng-Xiang, CHU Ge-Jian. Progress in Glycerol Metabolism and its Physiological Function in Yeast Cells. China Biotechnology, 2010, 30(05): 140-148.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2010/V30/I05/140

[1 ]Hohmann S. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev, 2002, 66(2): 300372. 
[2] Maeda T, WurglerMurphy S M, Saito H. A twocomponent system that regulates an osmosensing MAP kinase cascade in yeast. Nature, 1994, 369(6477): 242245. 
[3] Wang Z X, Zhuge J, Fang H, et al. Glycerol production by microbial fermentation: a review. Biotechnol Adv, 2001, 19(3): 201223. 
[4] Pahlman A K, Granath K, Ansell R, et al. The yeast glycerol 3phosphatases Gpp1p and Gpp2p are required for glycerol biosynthesis and differentially involved in the cellular responses to osmotic, anaerobic, and oxidative stress. J Biol Chem, 2001, 276(5): 35553563. 
[5] Cronwright G R, Rohwer J M, Prior B A. Metabolic control analysis of glycerol synthesis in Saccharomyces cerevisiae. Appl Environ Microbiol, 2002, 68(9): 44484456. 
[6] Larsson C, Pahlman I L, Ansell R, et al. The importance of the glycerol 3phosphate shuttle during aerobic growth of Saccharomyces cerevisiae. Yeast, 1998, 14(4): 347357. 
[7] Norbeck J, Blomberg A. Metabolic and regulatory changes associated with growth of Saccharomyces cerevisiae in 1.4 M NaCl. Evidence for osmotic induction of glycerol dissimilation via the dihydroxyacetone pathway. J Biol Chem, 1997, 272(9): 55445554. 
[8] Ronnow B, KiellandBrandt M C. GUT2, a gene for mitochondrial glycerol 3phosphate dehydrogenase of Saccharomyces cerevisiae. Yeast, 1993, 9(10): 11211130. 
[9] Forster J, Famili I, Fu P, et al. Genomescale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res, 2003, 13(2): 244253. 
[10] Nielsen J. It is all about metabolic fluxes. J Bacteriol, 2003, 185(24): 70317035. 
[11] Luttik M A, Overkamp K M, Kotter P, et al. The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH. J Biol Chem, 1998, 273(38): 2452924534. 
[12] Eriksson P, Andre L, Ansell R, et al. Cloning and characterization of GPD2, a second gene encoding snglycerol 3phosphate dehydrogenase (NAD+) in Saccharomyces cerevisiae, and its comparison with GPD1. Mol Microbiol, 1995, 17(1): 95107. 
[13] Nissen T L, Hamann C W, KiellandBrandt M C, et al. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis. Yeast, 2000, 16(5): 463474. 
[14] Ansell R, Granath K, Hohmann S, et al. The two isoenzymes for yeast NAD+dependent glycerol 3phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. Embo J, 1997, 16(9): 21792187. 
[15] Bjorkqvist S, Ansell R, Adler L, et al. Physiological response to anaerobicity of glycerol3phosphate dehydrogenase mutants of Saccharomyces cerevisiae. Appl Environ Microbiol, 1997, 63(1): 128132. 
[16] 王正祥, 诸葛健. 酵母细胞渗透压调节与甘油代谢. 生物工程进展, 1999, 19(05): 3439. Wang Z X, Zhuge J. Progress in Biotechnology, 1999, 19(05): 3439. 
[17] Albertyn J, Hohmann S, Thevelein J M, et al. GPD1, which encodes glycerol3phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the highosmolarity glycerol response pathway. Mol Cell Biol, 1994, 14(6): 41354144. 
[18] Herskowitz I. MAP kinase pathways in yeast: for mating and more. Cell, 1995, 80(2): 187197. 
[19] Chen R E, Thorner J. Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Biochim Biophys Acta, 2007, 1773(8): 13111340. 
[20] Raman M, Chen W, Cobb M H. Differential regulation and properties of MAPKs. Oncogene, 2007, 26(22): 31003112. 
[21] Gustin M C, Albertyn J, Alexander M, et al. MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev, 1998, 62(4): 12641300. 
[22] Warmka J, Hanneman J, Lee J, et al. Ptc1, a type 2C Ser/Thr phosphatase, inactivates the HOG pathway by dephosphorylating the mitogenactivated protein kinase Hog1. Mol Cell Biol, 2001, 21(1): 5160. 
[23] Dihazi H, Kessler R, Eschrich K. High osmolarity glycerol (HOG) pathwayinduced phosphorylation and activation of 6phosphofructo2kinase are essential for glycerol accumulation and yeast cell proliferation under hyperosmotic stress. J Biol Chem, 2004, 279(23): 2396123968. 
[24] Kayingo G, Wong B. The MAP kinase Hog1p differentially regulates stressinduced production and accumulation of glycerol and Darabitol in Candida albicans. Microbiology, 2005, 151(Pt 9): 29872999. 
[25] Alexander M R, Tyers M, Perret M, et al. Regulation of cell cycle progression by Swe1p and Hog1p following hypertonic stress. Mol Biol Cell, 2001, 12(1): 5362. 
[26] Wojda I, AlonsoMonge R, Bebelman J P, et al. Response to high osmotic conditions and elevated temperature in Saccharomyces cerevisiae is controlled by intracellular glycerol and involves coordinate activity of MAP kinase pathways. Microbiology, 2003, 149(Pt 5): 11931204. 
[27] Panadero J, Pallotti C, RodriguezVargas S, et al. A downshift in temperature activates the high osmolarity glycerol (HOG) pathway, which determines freeze tolerance in Saccharomyces cerevisiae. J Biol Chem, 2006, 281(8): 46384645. 
[28] Munro C A, Selvaggini S, de Bruijn I, et al. The PKC, HOG and Ca2+ signalling pathways coordinately regulate chitin synthesis in Candida albicans. Mol Microbiol, 2007, 63(5): 13991413. 
[29] Thorsen M, Di Y, Tangemo C, et al. The MAPK Hog1p modulates Fps1pdependent arsenite uptake and tolerance in yeast. Mol Biol Cell, 2006, 17(10): 44004410. 
[30] Klipp E, Nordlander B, Kruger R, et al. Integrative model of the response of yeast to osmotic shock. Nat Biotechnol, 2005, 23(8): 975982. 
[31] Valadi A, Granath K, Gustafsson L, et al. Distinct intracellular localization of Gpd1p and Gpd2p, the two yeast isoforms of NAD+dependent glycerol3phosphate dehydrogenase, explains their different contributions to redoxdriven glycerol production. J Biol Chem, 2004, 279(38): 3967739685. 
[32] Huh W K, Falvo J V, Gerke L C, et al. Global analysis of protein localization in budding yeast. Nature, 2003, 425(6959): 686691. 
[33] 陈献忠, 方慧英, 饶志明,等. 产甘油假丝酵母与酿酒酵母胞浆3磷酸甘油脱氢酶基因的功能比较. 生物化学与生物物理进展, 2009, 36(02): 198205. Chen X Z, Fang H Y, Rao Z M, et al. Progress in Biochemistry and Biophysics, 2009, 36(02): 198205. 
[34] Chen X, Fang H, Rao Z, et al. Cloning and characterization of a NAD+dependent glycerol3phosphate dehydrogenase gene from Candida glycerinogenes, an industrial glycerol producer. FEMS Yeast Res, 2008, 8(5): 725734. 
[35] Nguyen H T, Dieterich A, Athenstaedt K, et al. Engineering of Saccharomyces cerevisiae for the production of Lglycerol 3phosphate. Metab Eng, 2004, 6(2): 155163. 
[36] Gori K, Mortensen H D, Arneborg N, et al. Expression of the GPD1 and GPP2 orthologues and glycerol retention during growth of Debaryomyces hansenii at high NaCl concentrations. Yeast, 2005, 22(15): 12131222. 
[37] Remize F, Barnavon L, Dequin S. Glycerol export and glycerol3phosphate dehydrogenase, but not glycerol phosphatase, are rate limiting for glycerol production in Saccharomyces cerevisiae. Metab Eng, 2001, 3(4): 301312. 
[38] Cambon B, Monteil V, Remize F, et al. Effects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes. Appl Environ Microbiol, 2006, 72(7): 46884694. 
[39] Cordier H, Mendes F, Vasconcelos I, et al. A metabolic and genomic study of engineered Saccharomyces cerevisiae strains for high glycerol production. Metab Eng, 2007, 9(4): 364378.

[1] 应汉杰, 欧阳平凯. 1,6—二磷酸果糖的研究进展[J]. 中国生物工程杂志, 1999, 19(3): 12-13.
[2] 汪恩浩. 酵母生产的HBsAg的化学结构及其免疫原性[J]. 中国生物工程杂志, 1995, 15(2): 43-45.
[3] . 大规模生产人胰高血糖素[J]. 中国生物工程杂志, 1991, 11(5): 48-48.
[4] 敖世洲. 真核基因转录调控因子的研究[J]. 中国生物工程杂志, 1991, 11(4): 17-22.
[5] 禾子. 欧洲生物工程公司支持酵母基因组序列测定[J]. 中国生物工程杂志, 1991, 11(2): 53-54.
[6] SpartacoAstolfiFilho, 吴志纯. 能分泌活性α-淀粉酶(鼠胰)的稳定的酵母转化株[J]. 中国生物工程杂志, 1987, 7(4): 12-16.
[7] HashimotoH, MorikawaH, YamadaY, kimnraA, 陈玉梅. 用电注入质粒DNA转化完整酵母细胞的新方法[J]. 中国生物工程杂志, 1986, 6(1): 78-81.
[8] 荆玉祥. 克氏肺炎杆菌(K pneumoniae)的整个固氮基因nif簇在酵母染色体上稳定的整合[J]. 中国生物工程杂志, 1984, 4(1): 56-58.
[9] 李锦芳. 第一条人工染色体建成[J]. 中国生物工程杂志, 1984, 4(1): 83-84.
[10] 匡达人. 酵母分子生物学研究的某些新进展与动问[J]. 中国生物工程杂志, 1983, 3(3): 62-65.
[11] PabloValenzuela, 丁勇. B型肝炎病毒表面抗原颗粒在酵母中的合成和装配[J]. 中国生物工程杂志, 1983, 3(1): 5-7.
[12] 罗迪安. 用基因手术从酵母细胞制得肝炎疫苗[J]. 中国生物工程杂志, 1982, 2(3): 48-48.
[13] 罗迪安. 基因技术专利是有利可图的[J]. 中国生物工程杂志, 1982, 2(2): 55-55.
[14] Т.Н.Кожина, 梁志国. 酵母原生质体在遗传工程上的应用[J]. 中国生物工程杂志, 1982, 2(1): 27-30.
[15] 柯为. 固氮基因转移的研究进展[J]. 中国生物工程杂志, 1981, 1(4): 1-4.