Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2011, Vol. 31 Issue (01): 103-108    
综述     
纤维小体在燃料乙醇中的应用
黄俊1,2, 陈东1,2, 黄日波1,2
1. 广西大学生命科学与技术学院 南宁 530004;
2. 广西科学院生物质能源酶解技术国家重点实验室 国家非粮生物质能源工程技术研究中心 南宁 530004
Research Progress in Cellulosome Application in Bio-ethnol
HUANG Jun1,2, CHEN Dong1,2, HUANG Ri-bo1,2
1. College of Life Science and Biotechnology, Guangxi University, Nanning 530004, China;
2. State Key Laboratory of Bioenergy Enzyme Technology, Guangxi Academy of Sciences, Nationl Engineering Research Center for Non food Biorefinery, Nanning 530007, China
 全文: PDF(430 KB)   HTML
摘要:

纤维小体在木质纤维素的降解中起着重要作用。它不仅含有降解纤维素所需的各种纤维素酶系,而且组装成具有高效催化活性的多酶复合体形式。介绍了纤维小体基本结构与功能,重点概述了其在生物燃料乙醇中的应用并对纤维小体的研究提出了展望。

关键词: 纤维小体生物质应用    
Abstract:

Cellulosome plays important roles in lignocellulose degradation.The cellulosome not only secreted enzymes degrade lignocellulose,but also can assemble multi-enzyme complexes which has an effective catalytic activity. The basic sructure and function of cellulosome was described,summarizes the applications progrsses in bioethanol,and analyzed the perspectives and challenges.

Key words: Cellulosome    Biofuel    Application
收稿日期: 2010-08-06 出版日期: 2011-01-25
ZTFLH:  Q539+.3  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
黄俊
陈东
黄日波

引用本文:

黄俊, 陈东, 黄日波. 纤维小体在燃料乙醇中的应用[J]. 中国生物工程杂志, 2011, 31(01): 103-108.

HUANG Jun, CHEN Dong, HUANG Ri-bo. Research Progress in Cellulosome Application in Bio-ethnol. China Biotechnology, 2011, 31(01): 103-108.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2011/V31/I01/103


[1] Lamed R, Setter E, Bayer E A.Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J Bacteriol, 1983,156:828-836.

[2] Miranda M, Leung K T, Qin W S.The prospects of cellulose producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci,2009,5:500-516.

[3] Li X L, Chen H, Ljungdahl L G.Two cellulases, CelA and CelC, from the polycentric anaerobic fungus Orpinomyces strain PC-2 contain N-terminal docking domains for a cellulose-hemicellulase complex. Appl Environ Microbiol,1997,63:4721-4728.

[4] Bayer E A, Lamed R, White B A, et al.From cellulosomes to cellulosomics. Chem Rec,2008,8:364-377.

[5] Alber O, Noach I, Lamed R, et al.Preliminary X-ray characterization of a novel type of anchoring cohesion from the cellulosome of Ruminococcus flavefaciens. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2008,64:77-80.

[6] Ding S Y, Rincon M T, Lamed R,et al. Cellulosomal scaffoldin-like proteins from Ruminococcus ?avefaciens. J Bacteriol,2001,183:1945-1953.

[7] Boraston A B, McLean B W, Kormos J M, et al .Carbohydrate-binding modules: diversity of structure and function. In: Gilbert H J, Davies G J, Henrissat B, et al. Recent Advances in Carbohydrate Bioengineering. Cambridge: Royal Society of Chemistry, 1999. 202-211.

[8] Lehtio J, Sugiyama J, Gustavsson M, et al.The binding specificity and afflnity determinants of family1 and family3 cellulose binding modules. Proc Natl Acad Sci USA,2003,100:484-489.

[9] Zverlov V V, Fuchs K P, W.H.Schwarz. Chi18A,the endochitinase in the cellulosome of the thermophilic, cellulolytic bacterium Clostridium thermocellum. Appl Environ Microbiol,2002,68:3176-3179.

[10] Shaw A J, Podkaminer K K, Desai S G, et al. Metabolic engineering of a thermophilic bacterium to produce ethanolat high yield . Proc Natl Acad Sci USA ,2008, 105 :13769-13774.

[11] Cho K M.,Yoo Y J, Kang H S. δ-integration of endo/exoglucanase and β-glucosidasegenes into the yeast chromosomes for direct conversion of cellulose to ethanol.Enzyme Microb Technol, 1999,25:23-30.

[12] Bayer E A, Morag E, Lamed R. The cellulosome—a treasure-trove for biotechnology.TrendsBiotechnol.1994,12:378-386.

[13] Fierobe H P, Mechaly A, Tardif C, et al.Designand production of active cellulosome chimeras. J Biol Chem,2001,276:21257-21261.

[14] Fierobe H P, Bayer E A, Tardif C, et al.Degradation of cellulose substrates by cellulosome chimeras. J Biol Chem,2002,277:49621-49630.

[15] Fujita Y, Takahashi S, Ueda M,et al. Direct and ef?cient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes.Appl Environ Microbiol,2002,68:5136-5141.

[16] Fujita Y,Ito J,Ueda M, et al.Synergistic sacchari?cation,and direct fermentation to ethanol,of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microb,2004,70:1207-1212.

[17] Tsai S L,Oh J, Singh S,et al. Functional assembly of minicellulosomes on the saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Appl Environ Microbiol,2009,75: 6087-6093.

[18] Den Haan R,Rose S H,Lynd R, et al. Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab Eng,2007,9:87-94.

[19] Katahira S, Fujita Y, Mizuike A, et al.Construction of axylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells.Appl Environ Microbiol,2004,70:5407-5414.

[20] Sabathe F, Belaich A, Soucaille A. Characterization of the cellulolytic complex (cellulosome) of Clostridiuma cetobutylicum.FEMS Microbiol Lett, 2002,217:15-22.

[21] Sabathe F,Soucaille P.Characterization of the CipA scaffolding proteinand in vivo production of a minicellulosome in Clostridium acetobutylicum. J Bacteriol, 185:1092-1096.

[22] Perret S,Casalot L,Fierobe H P,et al. Production of heterologous and chimeric scaffoldins by Clostridiuma cetobutylicum ATCC824.J Bacteriol,2004,186:253-257.

[23] Mingardon F,Perret S,Belaich A, et al. Heterologous production,assembly,and secretion of a minicellulosome by Clostridium acetobutylicum ATCC824. Appl Environ Microb,2005,71:1215-1222.

[24] Demain A L,Newcomb M, Wu J H. Cellulase, clostridia, and ethanol . Microbiol Mol Biol Rev,2005, 69 :124-154.

[25] Brener D, Johnson B F. Relationship between substrate concentration and fermentation product ratios in Clostridium thermocellum cultures. Appl Environ Microbiol,1984,47:1126-1129.

[26] Lamed R, Kenig R, Morgenstern E, et al. Efficient cellulose solubilisation by a combined cellulosome- β -glucosidase system. Appl Biochem Biotechnol,1990,27:173-183.

[27] Klapatch T R, Demain A L, Lynd L R. Restriction endonuclease activity in Clostridium thermocellum and Clostridium thermosaccharolyticum. Appl Microbiol Biotechnol,1996;45:127-131.

[28] Tyurin M V, Desai S G, Lynd L R. Electrotransformation of Clostridium thermocellum. Appl Environ Microbiol,2004,70:883-90.

[29] Mai V, Lorenz W W, Wiegel J. Transformation of Thermoanaerobacterium sp. strain JW/SL-YS485 with plasmid pIKM1 conferring kanamycin resistance. FEMS Microbiol Lett,1997,148:163-167.

[30] Heap J T, Pennington O J, Cartman S T, et al. The ClosTron: a universal gene knock-out system for the genus Clostridium. J Microbiol Methods, 2007,70:452-464.

[1] 郑婕,吴昊,乔建军,朱宏吉. 革兰氏阳性菌荚膜多糖研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 91-98.
[2] 陈莹,李谦. 特殊酵母工业应用专利发展态势分析[J]. 中国生物工程杂志, 2021, 41(4): 91-99.
[3] 卢钟腾,呼高伟. 新型细胞穿膜肽的鉴定方法与其在抗肿瘤治疗中的应用[J]. 中国生物工程杂志, 2019, 39(12): 50-55.
[4] 陈秀秀,吴成林,周丽君. 人源抗体制备及临床应用研究进展 *[J]. 中国生物工程杂志, 2019, 39(10): 90-96.
[5] 王方旭,陈玉玲,耿读艳,陈传芳. 趋磁细菌及磁小体的生物医学应用研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 74-80.
[6] 秦梦彤,胡婧,李冠华. 生物质生物预处理研究进展与展望[J]. 中国生物工程杂志, 2018, 38(5): 85-91.
[7] 邱浩,汪铭书,程安春. γPNA一种新型高效的肽核酸[J]. 中国生物工程杂志, 2018, 38(2): 75-81.
[8] 许丽, 王玥, 姚驰远, 徐萍. 基因编辑技术发展态势分析与建议*[J]. 中国生物工程杂志, 2018, 38(12): 113-122.
[9] 王静,许鑫,王雪雨,姚伦广,阚云超,冀君. 环介导等温扩增技术检测食品安全的研究进展 *[J]. 中国生物工程杂志, 2018, 38(11): 84-91.
[10] 王曦, 陈熙明, 浦铜良. 溶葡球菌酶高效表达与应用[J]. 中国生物工程杂志, 2017, 37(9): 118-125.
[11] 焦洋, 刘恒, 拉提百克·买买提居马, 曹永平. 石墨烯及其衍生物在骨科的应用[J]. 中国生物工程杂志, 2017, 37(8): 78-83.
[12] 孟迎迎, 姚长洪, 刘娇, 申培丽, 薛松, 杨青. 微藻生物质成分检测方法评述[J]. 中国生物工程杂志, 2017, 37(7): 133-143.
[13] 赵治国, 崔强, 赵林立, 王海艳, 李刚, 刘来俊, 敖威华, 马彩霞. 微滴数字PCR技术应用进展[J]. 中国生物工程杂志, 2017, 37(6): 93-96.
[14] 闫鹏程, 张占江, 裴智勇, 付延婷, 陈禹保, 刘彤. 药用植物保育云服务平台设计与实现[J]. 中国生物工程杂志, 2017, 37(11): 37-44.
[15] 刘一杰, 薛永常. 植物黄酮类化合物的研究进展[J]. 中国生物工程杂志, 2016, 36(9): 81-86.