Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2011, Vol. 31 Issue (01): 81-85    
综述     
酵母转录因子Gal4研究进展
朱凯川, 张建华, 刘士德
深圳大学生命科学学院 深圳 518060
Progress in the Study of Yeast Gal4 Transcription Factor
ZHU Kai-chuan, ZHANG Jian-hua, LIU Shi-de
College of Life Sciences, Shenzhen University, Shenzhen 518060, China
 全文: PDF(384 KB)   HTML
摘要:

胁迫应答基因的转录激活是细胞应答胁迫作用的关键步骤。转录激活因子与启动子顺式作用元件结合是胁迫应答基因转录激活的关键环节。进化保守的Gal4是半乳糖代谢相关基因的转录激活因子。酵母Gal4通过其N端的DNA结合结构域识别并结合启动子UAS,通过其C端的激活结构域与转录因子作用,起始RNA聚合酶Ⅱ复合体的组装和转录。该过程不仅受转录调控因子Gal80和Gal3的调节,还与Gal4二聚体的形成有关。概述了酵母半乳糖代谢相关基因转录激活因子Gal4的研究进展。

关键词: Gal4Gal80Gal3UAS转录激活    
Abstract:

The key step of cellular stress response is transcriptional activation of stress response gene including that transcription factors interact with cis-acting element. Gal4 protein is an evolutionary conserved transcription factor in the process of galactose metabolism. N-terminal DNA binding domain of yeast Gal4 protein binds to the Upstream Activating Sequence and C-terminal activation domain interacts with general transcriptional factors, recruit RNA polymerase Ⅱ to TATA-box. This process is regulated not only by regulating factors Gal80 and Gal3, but also relies on Gal4 dimerization.The role of the yeast Gal4 plays on the transcriptional activation of galactose metabolism genes is illustrated.

Key words: Gal4    Gal80    Gal3    UAS    Transcriptional activation
收稿日期: 2010-08-12 出版日期: 2011-01-25
ZTFLH:  Q344+.13  
基金资助:

国家自然科学基金资助项目(31070043)

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
朱凯川
张建华
刘士德

引用本文:

朱凯川, 张建华, 刘士德. 酵母转录因子Gal4研究进展[J]. 中国生物工程杂志, 2011, 31(01): 81-85.

ZHU Kai-chuan, ZHANG Jian-hua, LIU Shi-de. Progress in the Study of Yeast Gal4 Transcription Factor. China Biotechnology, 2011, 31(01): 81-85.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2011/V31/I01/81


[1] Bhaumik S R,Raha T,Aiello D P,et al. In vivo target of a transcriptional activator revealed by fluorescence resonance energy transfer. Genes Dev,2004,18(3):333-343.

[2] Melcher K,Johnston S A. GAL4 interacts with TATA-binding protein and coactivators. Mol Cell Biol,1995,15(5):2839-2848.

[3] Wu Y,Reece R J,Ptashne M. Quantitation of putative activator-target affinities predicts transcriptional activating potentials. EMBO J,1996,15 (15):3951-3963.

[4] Wightman R,Bell R,Reece R J. Localization and interaction of the proteins constituting the GAL genetic switch in Saccharomyces cerevisiae. Eukaryot Cell,2008,7(12):2061-2068.

[5] Johnston M,Dover J. Mutations that inactivate a yeast transcriptional regulatory protein cluster in an evolutionarily conserved DNA binding domain. Proc Natl Acad Sci USA,1987,84(8):2401-2405.

[6] Baleja J D,Thanabal V,Wagner G. Refined solution structure of the DNA-binding domain of GAL4 and use of 3J (113Cd, 1H) in structure determination. J Biomol NMR,1997,10(4):397-401.

[7] Hong M,Fitzgerald M X,Harper S,et al. Structural basis for dimerization in DNA recognition by Gal4. Structure,2008,16 (7):1019-1026.

[8] Ferdous A,O'Neal M,Nalley K,et al. Phosphorylation of the Gal4 DNA-binding domain is essential for activator mono-ubiquitylation and efficient promoter occupancy. Mol Biosyst,2008,4(11):1116-1125.

[9] Ansari A Z,Reece R J,Ptashne M. A transcriptional activating region with two contrasting modes of protein interaction. Proc Natl Acad Sci U S A,1998,95(23):13543-13548.

[10] Thoden J B,Sellick C A,Reece R J,et al. Understanding a transcriptional paradigm at the molecular level. The structure of yeast Gal80p. J Biol Chem,2007,282(3):1534-1538.

[11] Bram R J,Kornberg R D. Specific protein binding to far upstream activating sequences in polymerase II promoters. Proc Natl Acad Sci U S A,1985,82 (1):43-47.

[12] Marmorstein R,Carey M,Ptashne M,et al. DNA recognition by GAL4: structure of a protein-DNA complex. Nature,1992,356 (6368):408-414.

[13] Lohr D. Organization of the GAL1-GAL10 intergenic control region chromatin. Nucleic Acids Res,1984,12(22):8457-8474.

[14] Li Q,Johnston S A. Are all DNA binding and transcription regulation by an activator physiologically relevant? Mol Cell Biol,2001,21 (7):2467-2474.

[15] Ren B,Robert F,Wyrick J J,et al. Genome-wide location and function of DNA binding proteins. Science,2000,290 (5500):2306-2309.

[16] Zenke F T,Engels R,Vollenbroich V,et al. Activation of Gal4p by galactose-dependent interaction of galactokinase and Gal80p. Science,1996,272 (5268):1662-1665.

[17] Nalley K,Johnston S A,Kodadek T. Proteolytic turnover of the Gal4 transcription factor is not required for function in vivo. Nature,2006,442(7106):1054-1057.

[18] Leuther K K,Johnston S A. Nondissociation of GAL4 and GAL80 in vivo after galactose induction. Science. 1992,256(5061):1333-1335.

[19] Peng G,Hopper J E. Evidence for Gal3p's cytoplasmic location and Gal80p's dual cytoplasmic-nuclear location implicates new mechanisms for controlling Gal4p activity in Saccharomyces cerevisiae. Mol Cell Biol,2000,20 (14):5140-5148.

[20] Kumar P R,Yu Y,Sternglanz R,et al. NADP regulates the yeast GAL induction system. Science. 2008,319 (5866):1090-1092

[21] Rodríguez-Navarro S. Insights into SAGA function during gene expression. EMBO Rep,2009,10(8):843-850.

[22] Bryant G O,Ptashne M. Independent recruitment in vivo by Gal4 of two complexes required for transcription. Mol Cell,2003,11(5):1301-1309.

[23] Larschan E,Winston F. The S. cerevisiae SAGA complex functions in vivo as a coactivator for transcriptional activation by Gal4. Genes Dev,2001,15 (15):1946-1956.

[24] Larschan E,Winston F. The Saccharomyces cerevisiae Srb8-Srb11 complex functions with the SAGA complex during Gal4-activated transcription. Mol Cell Biol,2005,25(1):114-123.

[25] Liu S,Li M,Zhang J,et al. Activation of the transcription of Gal4-regulated genes by Physarum 14-3-3 in yeast is related to dimer-binding motif-2 and three phosphorylation sites. Arch Microbiol,2010,192(1):33-40.

[26] Widak W,Benedyk K,Vydra N,et al. Expression of a constitutively active mutant of heat shock factor 1 under the control of testis-specific hst70 gene promoter in transgenic mice induces degeneration of seminiferous epithelium. Acta Biochim Pol,2003,50(2):535-541.

[27] Johnson A A,Hibberd J M,Gay C,et al. Spatial control of transgene expression in rice (Oryza sativa L.) using the GAL4 enhancer trapping system. Plant J,2005,41(5):779-789.

[1] 田开仁,薛二淑,宋倩倩,乔建军,李艳妮. CRISPR-dCas9调控基因转录的研究进展 *[J]. 中国生物工程杂志, 2018, 38(7): 94-101.
[2] 曹锡梅, 罗旭光, 梁俊红, 张潮, 白丽娟, 郭大玮. 利用ChIP技术研究SAF基因编码区组蛋白修饰变化[J]. 中国生物工程杂志, 2015, 35(3): 8-17.
[3] 张巧娟, 张艳琼, 柳长柏. 类转录激活样因子效应物核酸酶技术的原理及应用[J]. 中国生物工程杂志, 2014, 34(7): 76-80.
[4] 杨发誉, 葛香连, 谷峰. 新型靶向基因组编辑技术研究进展[J]. 中国生物工程杂志, 2014, 34(2): 98-103.
[5] 刘巍峰, 秦玉静, 高东. 酵母杂交系统的发展及其应用[J]. 中国生物工程杂志, 2001, 21(1): 23-24.
[6] 敖世洲. 蛋白质磷酸化与基因转录的调节[J]. 中国生物工程杂志, 1994, 14(1): 26-29.