Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2011, Vol. 31 Issue (03): 55-60    
研究报告     
NH4+对L-色氨酸发酵的影响
黄静1, 史建明1, 霍文婷1, 徐庆阳1, 谢希贤1, 温廷益2, 陈宁1
1. 天津科技大学生物工程学院 教育部工业微生物重点实验室 天津 300457;
2. 中国科学院微生物研究所 北京 100101
The Effects of NH4+ on L-tryptophan Fermentation
HUANG Jing1, SHI Jian-ming1, HUO Wen-ting1, XU Qing-yang1, XIE Xi-xian1, WEN Ting-yi2, CHEN Ning1
1. College of Biological Engineering, Tianjin University of Science & Technology, Key Laboratory of Industrial Microbiology, Tianjin 300457, China;
2. Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
 全文: PDF(818 KB)   HTML
摘要:

目的:探究NH4+浓度对大肠杆菌E.coli TRTH发酵生产L-色氨酸的影响。方法:通过外源添加试验,利用30 L发酵罐进行分批补料发酵试验,考察E. coli TRTH发酵生产L-色氨酸过程中生物量、L-色氨酸产量、有机酸含量、耗糖速率、发酵液中NH4+浓度及质粒稳定性变化。建立了大肠杆菌合成L-色氨酸的代谢流平衡模型,应用 MATLAB 软件计算出E. coli TRTH发酵中后期代谢网络的代谢流分布。结果:发酵结果显示,利用NaOH和氨水混合补料,控制NH4+浓度在120 mmol/L以下,菌体能够以较长时间和较高比生长速率保持对数生长,最终菌体生物量和L-色氨酸产量分别提高了12.16%和19.80%。随着NH4+浓度的增加,发酵液中丙酮酸、乳酸及乙酸浓度均略有增加,细胞质粒稳定性下降。控制NH4+浓度在120 mmol/L以下,E. coli TRTH发酵生产L-色氨酸的代谢流量分析结果表明,EMP途径的代谢流量降低7.31%,PP途径的代谢流量增加7.14%,TCA循环的代谢流量降低22.04%。结论:高浓度的NH4+导致菌体生长提前结束,耗糖速率降低,产酸受阻,控制NH4+浓度在120 mmol/L以下,解除了NH4+对菌体生长和产物生成的抑制,使得菌体生物量和L-色氨酸产量大幅提高,实现了高密度发酵培养的目的。

关键词: 大肠杆菌NH4+L-色氨酸高密度发酵    
Abstract:

Objective:To study the effects of NH4+ on biosynthesis of L-tryptophan. Methods:Fed-batch fermentation of E. coli TRTH with addition of ammonium sulfate carried out in 30-Liter fermentor and biomass, yield of L-tryptophan, consumption rate of glucose, plasmid stability were measured. The concentration of acetate, NH4+, lactate and pyruvate were investigated by BioProfile 300A Nova and high performance liquid chromatography (HPLC). The metabolic flux balance model of L-tryptophan synthesis by E. coli was established. Based on this model, the practical metabolic flux distribution of E. coli TRTH were determined with the linear program planted in MATLAB software. Results:During the fed-batch culture, E. coli TRTH was able to maintain higher growth rate at exponential phase, finally, the biomass and the yield of L-tryptophan were increased by 51.07% and 46.54% respectively by controlling the concentration of NH4+ less than 120 mmol/L. As the increase of the concentration of NH4+, the concentration of pyruvate, lactate and acetate were slightly increased, but cell plasmid stability was decreased. Data indicated that EMP pathway and TCA cycle were decreased by 7.31% and 22.04% respectively, PP pathway was increased by 7.14% compared with addition 5g/L of ammonium sulfate at 14h during the fed-batch culture. Conclusion:High concentrations of NH4+ terminated the cell growth, decreased the consumption rate of glucose and inhibited the L-tryptophan production. Controlled the concentration of NH4+ less than 120 mmol/L, the biomass and the yield of L-tryptophan were significantly increased, which accessed high cell density cultivation.

Key words: E. coli    NH4+    L-Tryptophan    High cell density cultivation
收稿日期: 2010-11-24 出版日期: 2011-04-01
ZTFLH:  Q815  
基金资助:

国家"重大新药创制"科技重大专项课题(2008ZX09401-05);"十一五"国家科技支撑计划重点项目(2008BAI63B01)资助项目

通讯作者: 陈宁     E-mail: ningch@tust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
黄静
史建明
霍文婷
徐庆阳
谢希贤
温廷益
陈宁

引用本文:

黄静, 史建明, 霍文婷, 徐庆阳, 谢希贤, 温廷益, 陈宁. NH4+对L-色氨酸发酵的影响[J]. 中国生物工程杂志, 2011, 31(03): 55-60.

HUANG Jing, SHI Jian-ming, HUO Wen-ting, XU Qing-yang, XIE Xi-xian, WEN Ting-yi, CHEN Ning. The Effects of NH4+ on L-tryptophan Fermentation. China Biotechnology, 2011, 31(03): 55-60.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2011/V31/I03/55

[1] 程立坤,黄静,秦永锋,等.代谢副产物乙酸对L-色氨酸发酵的影响.微生物学通报,2010,37(2):166-173.
Cheng L K,Huang J,Qin Y F,et al.Microbiology China,2010,37(2):166-173.
[2] Yanofsky C. Using studies on tryptophan metabolism to answer basic biological questions. The Journal of Biological Chemistry,2003,278(13):10858-10878.
[3] Eiteman M A,Altman E.Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends in Biotechnology,2008,24(11):530-536.
[4] 涂桂云,李敏.基因工程菌高密度发酵工艺研究进展.工业微生物,2004,34(3):49-52.
Xu G Y,Li M.Industrial Microbiology,2004,34(3):49-52.
[5] 李桢林,王永红,郝玉有,等.铵离子对必特螺旋霉素生物合成的调控.华东理工大学学报,2008,34(4):496-502.
Li Z L,Wang Y H,Hao Y Y,et al.Journal of East China University of Science and Technology,2008,34(4):496-502.
[6] 叶贵子,姜岷,陈可泉,等. 耐铵型产琥珀酸放线杆菌的选育及铵离子对其生长代谢的影响.生物工程学报,2010,26(2):183-188.
Ye G Z,Jiang M,Chen K Q,et al.Chinese Journal of Biotechnology,2010,26(2):183-188.
[7] 刘慧娟,华兆哲,堵国成,等.芽孢杆菌发酵生产碱性果胶酶的温度控制策略.过程工程学报,2007(4):786-789.
Liu H J,Huo Z C,Du G C,et al.The Chinese Journal of Process Engineering,2007(4):786-789.
[8] 冯德明,张洋,赵慧明,等.反相高效液相色谱法测定黄酒中的有机酸.中国酿造,2009,(3):157-161.
Feng D M,Zhang Y,Zhao H M,et al.China Brewing,2009,(3):157-161.
[9] Murarka A,James M C,Gonzalez R.Metabolic flux analysis of wild-type Escherichia coli and mutants deficient in pyruvate-dissimilating enzymes during the fermentative metabolism of glucuronate.Microbiology,2010,156(6):1860-1872.
[10] 王健,陈宁,张蓓,等.L-色氨酸生物合成的代谢流量分析.微生物学报,2003,43 (4):473-480.
Wang J,Chen N,Zhang B,et al.Acta Microbiologica Sinica,2003,43 (4):473-480.
[11] 杨炜,王伟刚,田海英,等.重组大肠杆菌高表达高密度发酵研究.生物技术,2006,16(3):83-86.
Yang W,Wang W G,Tian H Y,et al.Biotechnology,2006,16(3):83-86.
[12] 郑梦杰,白秀峰.铵离子抑制avermectin生物合成的机理.中国抗生素杂志,2001,26(3):171-183.
Zheng M J,Bai X F.Chinese Journal of Antibiotics,2001,26(3):171-183.
[13] Buurman E T,Mattos M J,Neijssel O M.Futile cycling of ammonium ions via the high affinity potassium uptake system (Kdp) of Escherichia coil.Arch Microbiol,1991,155(4):391-395.
[14] 郑志永,关怡新,林东强,等.重组基因表达对大肠杆菌生理的影响.生物加工过程,2005,2(2):13-17.
Zheng Z Y,Guan Y X,Lin D Q,et al.Chinese Journal of Bioprocess Engineering,2005,2(2):13-17.
[15] Schmida J W,Maucha K,Reuss M,et al.Metabolic design based on a coupled gene expression-metabolic network model of tryptophan production in Escherichia coli.Metabolic Engineering,2004,6(4):363-377.

[1] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[2] 何若昱,林福玉,高向东,刘金毅. 信号肽在大肠杆菌分泌系统中的研究与应用进展[J]. 中国生物工程杂志, 2021, 41(5): 87-93.
[3] 吴弘轩, 杨金花, 沈培杰, 李清晨, 黄建忠, 祁峰. 利用大肠杆菌细胞工厂生产吲哚-3-乙酸的研究 *[J]. 中国生物工程杂志, 2021, 41(1): 12-19.
[4] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[5] 童梅,程永庆,刘金毅,徐晨. 促进大肠杆菌周质空间小分子抗体表达的菌种构建方法*[J]. 中国生物工程杂志, 2020, 40(5): 48-56.
[6] 杨丽,石晓宇,李文蕾,李剑,徐寒梅. 构建噬菌体展示抗体库过程中电穿孔法的条件优化[J]. 中国生物工程杂志, 2020, 40(4): 42-48.
[7] 乐易林,傅毓,倪黎,孙建中. 热稳定性丙酮酸:铁氧还蛋白氧化还原酶异源表达及其在乙酰辅酶A合成中的应用 *[J]. 中国生物工程杂志, 2020, 40(3): 72-78.
[8] 杭海英,刘春春,任丹丹. 流式细胞术的发展、应用及前景 *[J]. 中国生物工程杂志, 2019, 39(9): 68-83.
[9] 赵程程,孙长坡,常晓娇,伍松陵,林振泉. 大肠杆菌细胞裂解系统的构建及其在真菌毒素降解酶表达中的应用 *[J]. 中国生物工程杂志, 2019, 39(4): 69-77.
[10] 黄燕,孙益荣,吴敬,宿玲恰. 重组Humicola insolens角质酶的高密度发酵优化 *[J]. 中国生物工程杂志, 2019, 39(1): 63-70.
[11] 贺雪婷,张敏华,洪解放,马媛媛. 大肠杆菌丁醇耐受机制及耐受菌选育研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 81-87.
[12] 孙帆,宿玲恰,张康,吴敬. D-阿洛酮糖 3-差向异构酶在枯草芽孢杆菌中的高效表达及固定化细胞研究 *[J]. 中国生物工程杂志, 2018, 38(7): 83-88.
[13] 胡立强, 郑文, 钟艺, 杜丹, 杨浩, 龚萌. 抗病毒蛋白RC28在大肠杆菌和毕赤酵母中的表达及活性比较[J]. 中国生物工程杂志, 2017, 37(1): 14-20.
[14] 张宇萌, 童梅, 陆小冬, 米月, 莫婷, 刘金毅, 姚文兵. 大肠杆菌可溶性表达抗TNF-α Fab的工艺优化[J]. 中国生物工程杂志, 2016, 36(9): 31-37.
[15] 康国凯, 冯国栋, 曹坤琳, 陈正军, 葛向阳. 重组毕赤酵母(Pichia pastoris)高产Lunasin的发酵工艺优化[J]. 中国生物工程杂志, 2016, 36(8): 73-79.