Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2010, Vol. 30 Issue (09): 105-109    DOI: Q946.5
综述     
角质酶及其在纺织工业中的应用
张瑶1,2,陈晟1,2,吴丹1,2,吴敬1,2**,陈坚1,2
1.江南大学食品科学与技术国家重点实验室 无锡 2141221
2.江南大学生物工程学院 工业生物技术教育部重点实验室 无锡 214122
Cutinase and its Application in Textile
ZHANG Yao1, 2 ,CHEN Sheng1, 2, WU Dan1, 2 ,WU Jing1, 2,CHEN Jian1, 2
1.State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
2.School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 2141221, China
 全文: PDF(386 KB)   HTML
摘要:

详细综述了国内外对角质酶的研究概况,包括角质酶的主要来源,角质酶基因的克隆与表达,以及关于角质酶的发酵研究。着重阐述了目前角质酶在棉纤维的生物精炼,羊毛的防毡缩整理,以及合成纤维的生物改性等方面的应用进展。另外,作为推动纺织工业清洁生产的关键酶制剂,笔者对未来角质酶在纺织工业中的应用前景作了简要展望。

关键词: 角质酶角质纺织工业酶制剂    
Abstract:

The paper focus on recent research of cutinase, including the major source, the cloning and expression, as well as the fermentation of cutinase. It also elaborates the current application progress of cutinase in the following aspects, such as cotton fiber bioscouring, wool anti-felting finish, and biological modification of synthetic fibers, etc. In addition, the cutinase, as a key enzyme in promoting the textile cleaner production industry, was summaried briefly in the future textile application.

Key words: Cutinase    Cutin    Textile    Enzyme
收稿日期: 2010-04-19 出版日期: 2010-08-25
基金资助:

国家“863”计划 (2009AA02Z204)、国家自然科学基金(30970057)、国家杰出青年基金(20625619)、江南大学创新团队项目(2008CXTD01)、江南大学博士研究生科学研究基金资助项目

通讯作者: 吴敬     E-mail: jingwu@jiangnan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张瑶
陈晟
吴丹
吴敬
陈坚

引用本文:

张瑶 陈晟 吴丹 吴敬 陈坚. 角质酶及其在纺织工业中的应用[J]. 中国生物工程杂志, 2010, 30(09): 105-109.

ZHANG Yao, CHEN Cheng, TUN Dan, TUN Jing, CHEN Jian. Cutinase and its Application in Textile. China Biotechnology, 2010, 30(09): 105-109.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/Q946.5        https://manu60.magtech.com.cn/biotech/CN/Y2010/V30/I09/105

[1] Holmquist M. Alpha/Betahydrolase fold enzymes: structures, functions and mechanisms. Curr Protein Pept Sci, 2000, 1(2): 209235. 
[2] Kolattukudy PE, Purdy R E, Maiti I B. Cutinases from fungi and pollen. Methods Enzymol, 1981, 71: 652664. 
[3] Mandy A M, Anne H, Wolfgang Z. Cutinase production by Fusarium oxysporum in liquid medium using central composite design. Biotechnol Lett, 2006, 28:681 685. 
[4] Pio T F, Macedo G A. Cutinase production by Fusarium oxysporum in liquid medium using central composite design. J Ind Microbiol Biotechnol, 2008, 35 (1): 5967. 
[5] Li D H, Ashby A M, Johnstone K, et al. Molecular evidence that the extracellular cutinase Pbc1 is required for pathogenicity of Pyrenopeziza brassicae on oilseed rape. Mol PlantMicrobe Interact, 2003, 16 (6): 545552. 
[6] Sebastian J, Chandra A K, Kolattukudy P E. Discovery of a cutinaseproducing Pseudomonas sp. cohabiting with an apparently nitrogenfixing Corynebacterium sp. in the phyllosphere. J Bacteriol, 1987, 169(1): 131136. 
[7] Chen S, Tong X, Woodard R W, et al. Identification and characterization of bacterial cutinase. J Biol Chem, 2008, 283(38): 2585425862. 
[8] Dutta K, Sen S, Veeranki V. Production, characterization and applications of microbial cutinases. Process Biochemistry, 2009, 44(2): 127134. 
[9] Fett W F, Gerard H C, Moreau R A, et al. Cutinase production by Streptomyces spp. Current micro biology, 1992, 25(3): 165171. 
[10] Egmond M. Fusarium solani pisi cutinase. Biochimie, 2000, 82(11): 10151021. 
[11] Kwon M, Kim H S, Yang T H, et al. Song Highlevel expression and characterization of Fusarium solani cutinase in Pichia pastoris. Protein Expression and Purification, 2009, 68(1): 104109. 
[12] van G I, Beijersbergen A, van D H, et al. Expression and secretion of defined cutinase variants by aspergillus awamori. Appl Environ Microbiol, 1998, 64(8): 27942799. 
[13] Jacob D S. Production of Fusarium solani f.sp.pisi cutinase in Fusarium venenatum A3/5. Biotechnology Letters, 2007, 29(8): 12271232. 
[14] Belen R M, Cardoza R E, Hermosa R, et al. Cloning and characterization of the Thcut1 gene encoding a cutinase of Trichoderma harzianum T34. Curr Genet, 2008, 54(6): 301312. 
[15] Chen S, Su L Q, Billig S S, et al. Biochemical charaterization of the cutinases from Thermonbifida fusca. Journal of Molecular Catalysis B: Enzymatic, 2010, 63: 121127. 
[16] Calado C R C, Taipa M A, Cabral J M S, et al. Optimization of culture conditions and characterisa tion of cutinase produced by recombinant Saccharomyces cerevisiae. Enzyme and Microbial Technology, 2002, 31: 161170. 
[17] Calado C R C, Almeida C, Cabral J M S, et al. Development of a fedbatch cultivation strategy for the enhanced production and secretion of cutinase by a recombinant Saccharomyces cerevisiae SU50 strain. Journal of Bioscience and Bioengineering, 2003, 96: 141148. 
[18] Piod T F, Macedo G A. Optimizing the production of cutinase by Fusarium oxysporumusing response surface methodology. Enzyme Microb.Technol, 2007, 43: 613619. 
[19] Macedo G, Fraga L. Production of cutinase by Fusariumoxy sporumin solidstate fermentation using agroindustrialresidues. Biotechnol, 2007, 131: 211 241. 
[20] 毕风珍, 师俊玲, 李寅, 等. Thermobifida fuscaWSH0311产角质酶摇瓶发酵条件研究. 应用与环境生物学报, 2005, 11(5): 608610. Bi F Z, Shi J L, Li Y, et al. J Appl Environ Biol. 2005, 11(5): 608610. 
[21] 张守亮, 陈坚, 华兆哲,等. Thermobi fida fuscaWSH0311突变株合成角质酶的发酵条件. 化工进展, 2006, 25(5):533537. Zhang S L, Cheng J, Hua Z Z, et al. Chemical Industry and Engineering Progress, 2006, 25(5): 533537. 
[22] 张芙华, 陈晟, 张东旭, 等. pH两阶段控制策略发酵生产重组角质酶. 中国生物工程杂志, 2008, 28(5): 5964. Zhang F H, Chen S, Zhang D X, et al. China Biotechnology, 2008, 28(5): 5964. 
[23] 陈晟, 张芙华, 陈坚, 等. 流加发酵对重组Bacillus subtilis发酵生产角质酶的影响. 中国生物工程杂志, 2010, 30(1): 6266. Chen S, Zhang F H, Chen J, et al. China Biotechnology, 2010, 30(1): 6266. 
[24] 何刚强, 堵国成, 刘立明, 等. 嗜热子囊菌利用短链有机酸生产角质酶. 生物工程学报, 2008, 24(5): 824828. He G Q, Du G C, Liu L M, et al. Chinese Journal of Biotechnology, 2008, 24(5): 824828. 
[25] Degani O, Gepstein S. Potential use of cutinase in enzymatic scouring of cotton fiber cuticle. Applied Biochemistry and Biotechnology, 2002, 102: 277 289. 
[26] Agrawal P B, Agrawal P B, Nierstrasz V A, et al. Cutinase and pectinase in cotton bioscouring: an innovative and fast bioscouring process. Biocatal Biotrans, 2008, 26(5): 412421. 
[27] Yan H J, Hua Z Z, Qian G S, et al. Effect of cutinase on the degradation of cotton seed coat in bioscouring. Biotechnol Bioprocess Eng, 2009, 14(3): 354360. 
[28] 王小花, 洪枫, 陆大年, 等. 脂肪酶在纺织工业中的应用. 毛纺科技, 2005, 33(6): 2224. Wang X H, Hong F, Lu D N, et al. Wool Textile Journal, 2005, 33(6): 2224. 
[29] Wang P, Wang Q, Fan X R, et al. Effects of cutinase on the enzymatic shrinkresist finishing of wool fabrics. Enzyme Microb Technol, 2009, 44(5): 302 308. 
[30] Norihiro N, Kazuo N, Akitomo Y. Surface modification of PET films by a combination of vinylphthalimide deposition and Arplasma irradiation. J Adhesion Sci Techno, 2004, 18(13): 1517 1528. 
[31] Silva C, Carneiro F, O’Neill A, et al. Cutinase–a new tool for biomodification of synthetic fibers. Journal of Polymer Science Part A: Polymer Chemistry, 2005, 43: 24482450. 
[32] Yoon M Y, Kellis J, Poulose A J. Enzymatic modification of polyester. AATCC Rev, 2002, 2(6):3336. 
[33] Eberl A, Heumann S, Kotekc R, et al. Enzymatic hydrolysis of PTT polymers and oligomers. Journal of Biotechnology, 2008, 135: 4551. 
[34] CavacoPaulo A, Morgado J, Juergen A J, et al. Interactions of cotton with CBD peptides. Enzyme Microbial Technol 1999, 25: 639643. 
[35] Araujo R, Silva C, O’Neill A, et al. Tailoring cutinase activity towards polyethylene terephthalate and polyamide 6,6 fibers. Journal of Biotechnology, 2007, 128: 849857. 
[36] Matama T, Vaz F, Gubitz G M, et al. The effect of additives and mechanical agitation in surface modification of acrylic fibres by cutinase and esterase. Biotechnology Journal, 2006, 1: 842849. 
[37] Silva C, Araujo R, Casal M, et al. Influence of mechanical agitation on cutinases and protease activity towards polyamide substrates. Enzyme and Microbial Technology, 2007, 40: 16781685. 
[38] O’Neill A, Araujo R, Casal M, et al. Effect of the agitation on the adsorption and hydrolytic efficiency of cutinases on polyethylene terephthalate fibres. Enzyme and Microbial Technology, 2007, 40: 18011805. 
[39] CavacoPaulo A, Almeida L. Effects of agitation and endoglucanase pretreatment on the hydrolysis of cotton fabrics by a total cellulase. Textile Research Journal, 1996, 66:287294.
[ 40] MaldonadoValderrama J, Fainerman V, Aksenenko E, et al. Dynamics of protein adsorption at the oilwater interface: comparison with a theoretical model. Colloids Surf A: Physicochem Eng Aspects, 2005, 261: 8592. 
[41] Silva C, Matama T, Gubitz G M, et al. Influence of organic solvents on cutinase stability and accessibility to polyamide fibers. Journal of Polymer Science, 2005, 43: 27492753.

[1] 黄燕,孙益荣,吴敬,宿玲恰. 重组Humicola insolens角质酶的高密度发酵优化 *[J]. 中国生物工程杂志, 2019, 39(1): 63-70.
[2] 艾君, 姜潮, 刘敏, 王晓艳, 田海山, 李校堃. 拟南芥双油体蛋白融合表达KGF-2及其生物学活性研究[J]. 中国生物工程杂志, 2015, 35(1): 21-26.
[3] 赵海洋, 王泽, 黄鹏煌, 田海山, 李校堃, 杨树林. rhKGF2-EGFP的融合表达及醇脂质体的制备[J]. 中国生物工程杂志, 2014, 34(10): 22-27.
[4] 朱小静, 姜潮, 薛萍, 王晓艳, 徐丹, 南佳, 艾君, 李校堃. 重组角质细胞生长因子-1在杆状病毒表达系统中的表达及其生物活性研究[J]. 中国生物工程杂志, 2013, 33(3): 47-53.
[5] 王玉海, 张慧斌, 杨慧敏, 孟青青, 王凤寰. 乳酸克鲁维酵母的发酵优势及在食品酶制剂领域中的应用[J]. 中国生物工程杂志, 2013, 33(12): 121-126.
[6] 郭森, 吴丹, 陈晟, 吴敬, 陈坚. 重组大肠杆菌产角质酶-CBM摇瓶发酵优化及分泌表达研究[J]. 中国生物工程杂志, 2011, 31(9): 55-61.
[7] 许发喜 刘翠芳 邹杰 王育华 李尉 陈信波. 植物角质层对非生物逆境胁迫响应研究进展[J]. 中国生物工程杂志, 2010, 30(08): 126-130.
[8] 陈晟 张芙华 陈坚 吴敬. 流加发酵对重组Bacillus subtilis发酵生产角质酶的影响[J]. 中国生物工程杂志, 2010, 30(01): 62-66.
[9] 郜赵伟 张宇宏 张伟. 微生物酶分子改造研究进展[J]. 中国生物工程杂志, 2010, 30(01): 98-103.
[10] 张芙华,陈晟,张东旭,华兆哲,陈坚,吴敬. pH两阶段控制策略发酵生产重组角质酶[J]. 中国生物工程杂志, 2008, 28(5): 59-64.
[11] 吴晓萍,曾耀英,贺芳. 腺病毒介导重组hKGF基因转染HaCat细胞及其表达[J]. 中国生物工程杂志, 2007, 27(3): 1-5.
[12] 张充, 廖祥儒, 彭亮, 安秀娟, 吴立峰, 杨磊. 嗜碱性细菌在酶制剂生产中的应用[J]. 中国生物工程杂志, 2005, 25(S1): 152-155.
[13] 金萍, 李玉新, 麻彤辉, 何孟元. 角质细胞生长因子的研究进展[J]. 中国生物工程杂志, 2001, 21(6): 34-37.
[14] 曲音波; 高培基; 陈嘉川. 制浆造纸用木聚糖酶的研究进展[J]. 中国生物工程杂志, 1998, 18(6): 35-39.
[15] 王薇青. 生物技术在轻工、食品领域的应用及展望[J]. 中国生物工程杂志, 1997, 17(6): 34-36.