Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2010, Vol. 30 Issue (08): 126-130    DOI: Q998.113
综述     
植物角质层对非生物逆境胁迫响应研究进展
许发喜,刘翠芳,邹杰,王育华,李尉,陈信波**
湖南农业大学作物基因工程湖南省重点实验室 长沙 410128
Research Progress in Plant Cuticle Responses to Abiotic Stresses
XU Fa-xi,LIU Cui-fang,ZOU Jie,WANG Yu-hua,LI Wei,CHEN Xin-bo
Crop Gene Engineering Key Laboratory of Hunan Province, Hunan Agriculture University, Changsha 410128, China
 全文: PDF(379 KB)   HTML
摘要:

角质层,包括角质和蜡质,是主要由脂肪酸及其衍生物构成的覆盖在植物的外表面的高度疏水层,在植物生长发育过程中起到非常重要的保护屏障作用。除了在极端温度、干旱、高盐等多种非生物逆境胁迫下起到保护作用外,还能够保护植物内部组织免受细菌、真菌病原体的侵染。现就植物角质层的组成、合成途径以及与植物抗逆性,特别是与抗旱能力的关系方面的最新研究进展进行了综述。

关键词: 角质层角质蜡质非生物逆境    
Abstract:

Plant cuticle plays an important role in the plant life cycle. The cuticle is highly hydrophobic layer of cutin intermeshed and coated with waxes that covers essentially all aerial organs and mainly composed of fatty acids and their derivatives. Plant cuticle can be divided into the inner cutin and outer wax layer and forms a protective layer against temperature extremes, drought, high salinity and other abiotic stresses. The cuticle also protects inner tissues from bacterial and fungal pathogens, herbivore attacks. The recent research progresses in the relationship between plant cuticle and stress resistance, especially drought tolerance were reviewed.

Key words: Cuticle    Cutin    Wax    Abiotic stresses
收稿日期: 2010-01-25 出版日期: 2010-08-25
基金资助:

国家转基因生物新品种培育科技重大专项(2009ZX08001026B)、湖南省科技重大专项(2009FJ10041)  资助项目

通讯作者: 陈信波     E-mail: xinbochen@live.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
许发喜
刘翠芳
邹杰
王育华
李尉
陈信波

引用本文:

许发喜 刘翠芳 邹杰 王育华 李尉 陈信波. 植物角质层对非生物逆境胁迫响应研究进展[J]. 中国生物工程杂志, 2010, 30(08): 126-130.

HU Fa-Chi, LIU Cui-Fang, JU Jie, WANG Yo-Hua, LI Wei, CHEN Shen-Bei. Research Progress in Plant Cuticle Responses to Abiotic Stresses. China Biotechnology, 2010, 30(08): 126-130.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/Q998.113        https://manu60.magtech.com.cn/biotech/CN/Y2010/V30/I08/126

[1] 高峰, 熊爱生, 彭日荷, 等. 抗逆相关DREB转录因子的研究进展及应用. 上海农业学报, 2008 , 24(1): 118 123. Gao F, Xiong A S, Peng R H, et al. Acta Agri Shanghai, 2008, 24(1): 118 ~123. 
[2] 李昊文, 赵军. 非生物逆境信号转导的分子机制. 中国农业科技导报, 2008, 10(S1): 16 Li H W, Zhao, J. J Agri Sci Tech, 2008, 10(S1): 16. 
[3] Samuels L, Kunst L, Jetter R. Sealing plant surfaces: cuticular wax formation by epidermal cells. Annu Rev Plant Biol, 2008, 59: 683707. 
[4] 李魏强, 张正斌, 李景娟. 植物表皮蜡质与抗旱及其分子生物学. 植物生理与分子生物学学报, 2006, 32(5): 505512. Li W Q, Zhang Z B, Li J J. J Plant Physiol and Mol Biol, 2006, 32(5): 505512. 
[5] Kannangara R, Branigan C, Liu Y, et al. The transcription factor WIN1/SHN1 regulates cutin biosynthesis in Arabidopsis thaliana. Plant Cell, 2007, 19(4): 12781294. 
[6] Rowland O, Zheng H, Hepworth S R, et al. CER4 encodes an alcoholforming fatty acylcoenzyme A reductase involved in cuticular wax production in Arabidopsis. Plant Physiol, 2006, 142(3): 866877. 
[7] Aarts M G, Keijzer C J, Stiekema W J, et al. Molecular characterization of the CER1 gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell, 1995, 7(12): 21152127. 
[8] Chen X, Goodwin S M, Boroff V L, et al. Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production. Plant Cell, 2003, 15(5): 11701185. 
[9] Costaglioli P, Joubès J, Garcia C, et al. Profiling candidate genes involved in wax biosynthesis in Arabidopsis thaliana by microarray analysis. Biochim Biophys Acta, 2005, 1734(3): 247258. 
[10] Chen G, Sagi M, Weining S, et al. Wild barley eibi1 mutation identifies a gene essential for leaf water conservation. Planta, 2004, 219(4): 684693. 
[11] Zhang J, Broeckling C D, Blancaflor E B, et al. Overexpression of WXP1, a putative Medicago truncatula AP2 domaincontaining transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa(Medicago sativa). Plant J, 2005, 42(5): 689707. 
[12] Wang H, Hao J, Chen X, et al. Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Mol Biol, 2007, 65(6): 799815. 
[13] Yu D, Ranathunge K, Huang H, et al. Wax CrystalSparse Leaf1 encodes a betaketoacyl CoA synthase involved in biosynthesis of cuticular waxes on rice leaf. Planta, 2008, 228(4): 675685. 
[14] Cameron K D, Teece M A, Smart L B. Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol, 2006, 140(1): 176183. 
[15] Kosma D K, Bourdenx B, Bernard A, et al. The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiol, 2009, 151(4): 19181929. 
[16] Samdur M Y, Manivel P, Jain V K, et al. Genotypic differences and waterdeficit induced enhancement in epicuticular wax load in peanut. Crop Sci, 2003, 43(4): 12941299. 
[17] Shepherd T, Wynne Griffiths D. The effects of stress on plant cuticular waxes. New Phytol, 2006, 171(3): 469499. 
[18] Kim K S, Park S H, Jenks M A, et al. Influence of water deficit on leaf cuticular waxes of soybean (Glycine max [L.] Merr.). Int J Plant Sci, 2007, 168(3): 307316. 
[19] Kim K S, Park S H, Jenks M A. Changes in leaf cuticular waxes of sesame (Sesamum indicum L.) plants exposed to water deficit. Plant Physiol, 2007, 164(9): 11341143. 
[20] Kosma D K, Jenks M A. Ecophysiological and moleculargenetic determinants of plant cuticle function in drought and salt stress tolerance. In: M A Jenks, PM Hasegawa, S M Jain. Advances in Molecular Breeding toward Drought and Salt Tolerant Crops. Dordrecht, Germany: Springer Netherlands, 2007. 91120. 
[21 ] Jenks M A, Andersen L, Teusink R S, et al. Leaf cuticular waxes of potted rose cultivars as affected by plant development, drought and paclobutrazol treatments. Physiol Plant, 2001, 112(1): 6270. 
[22] Islam M A, Du H, Ning J, et al. Characterization of Glossy1homologous genes in rice involved in leaf wax accumulation and drought resistance. Plant Mol Biol, 2009, 70(4): 443456. 
[23] Jiang Q, Zhang J, Guo X, et al. Physiological characterization of transgenic alfalfa (Medicago sativa) plants for improved drought tolerance. Int J Plant Sci, 2009, 170(8): 969978. 
[24] Burow G B, Franks C D, Xin Z. Genetic and physiological analysis of an irradiated bloomless mutant (epicuticular wax mutant) of sorghum. Crop Sci, 2008, 48(1): 4148. 
[25] Panikashvili D, SavaldiGoldstein S, Mandel T, et al. The Arabidopsis DESPERADO/AtWBC11 transporter is required for cutin and wax secretion, Plant Physiol, 2007, 145(4): 13451360. 
[26] Cominelli E, Sala T, Calvi D, et al. Overexpression of the Arabidopsis AtMYB41 gene alters cell expansion and leaf surface permeability. Plant J, 2008, 53(1): 5364. 
[27] Kurdyukov S, Faust A, Nawrath C, et al. The epidermisspecific extracellular bodyguard controls cuticle development and morphogenesis in Arabidopsis. Plant Cell, 2006, 18(2): 321339. 
[28] Schnurr J, Shockey J, Browse J. The acylCoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis. Plant Cell, 2004, 16(3): 629642. 
[29] Nawrath C. Unraveling the complex network of cuticular structure and function. Curr Opin Plant Biol, 2006, 9(3): 281287. 
[30] Li Y, Beisson F, Koo A J, et al. Identification of acyltransferases required for cutin biosynthesis and production of cutin with suberinlike monomers. Proc Natl Acad Sci USA, 2007, 104(46): 1833918344. 
[31] Rao G G, Basha S K M, Rao G R. Effect of NaCl salinity on amount and composition of cuticular wax and cuticular transpiration rate in peanut (Arachis hypogaea L.). Indian J Exp Biol, 1981, 19: 880881. 
[32] Mills D, Zhang G, Benzioni A. Effect of different salts and of ABA on growth and mineral uptake in jojoba shoots grown in vitro. Plant Physiol, 2001, 158(8): 1031~1039 
[33] Gauvrit C, Gaillardon P. Effect of lowtemperatures on 2, 4D behaviour in maize plants. Weed Res, 1991, 31(3): 135142. 
[34] Long L M, Patel H P, Cory W C, et al. The maize epicuticular wax layer provides UV protection. Funct Plant Biol, 2003, 30(1): 7581. 
[35] Goodwin S M, Jenks M A. Plant cuticle function as a barrier to water loss. In: Jenks M A, Hasegawa PM. Plant Abiotic Stress. Oxford, UK: Blackwell Publishing Inc. 2005. 1436. 
[36] Ukitsu H, Kuromori T, Toyooka K, et al. Cytological and biochemical analysis of COF1, an Arabidopsis mutant of an ABC transporter gene. Plant Cell Physiol, 2007, 48(11): 15241533. 
[37] Jung K H, Han M J, Lee D Y, et al. Waxdeficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development. Plant Cell, 2006, 18(11): 30153032.

[1] 黄燕,孙益荣,吴敬,宿玲恰. 重组Humicola insolens角质酶的高密度发酵优化 *[J]. 中国生物工程杂志, 2019, 39(1): 63-70.
[2] 杨贤鹏, 王宙雅, 高翔, 李荣俊, 吕世友. 植物表皮蜡质生物合成及调控[J]. 中国生物工程杂志, 2016, 36(9): 75-80.
[3] 艾君, 姜潮, 刘敏, 王晓艳, 田海山, 李校堃. 拟南芥双油体蛋白融合表达KGF-2及其生物学活性研究[J]. 中国生物工程杂志, 2015, 35(1): 21-26.
[4] 赵海洋, 王泽, 黄鹏煌, 田海山, 李校堃, 杨树林. rhKGF2-EGFP的融合表达及醇脂质体的制备[J]. 中国生物工程杂志, 2014, 34(10): 22-27.
[5] 朱小静, 姜潮, 薛萍, 王晓艳, 徐丹, 南佳, 艾君, 李校堃. 重组角质细胞生长因子-1在杆状病毒表达系统中的表达及其生物活性研究[J]. 中国生物工程杂志, 2013, 33(3): 47-53.
[6] 郭森, 吴丹, 陈晟, 吴敬, 陈坚. 重组大肠杆菌产角质酶-CBM摇瓶发酵优化及分泌表达研究[J]. 中国生物工程杂志, 2011, 31(9): 55-61.
[7] 张瑶 陈晟 吴丹 吴敬 陈坚. 角质酶及其在纺织工业中的应用[J]. 中国生物工程杂志, 2010, 30(09): 105-109.
[8] 陈晟 张芙华 陈坚 吴敬. 流加发酵对重组Bacillus subtilis发酵生产角质酶的影响[J]. 中国生物工程杂志, 2010, 30(01): 62-66.
[9] 张芙华,陈晟,张东旭,华兆哲,陈坚,吴敬. pH两阶段控制策略发酵生产重组角质酶[J]. 中国生物工程杂志, 2008, 28(5): 59-64.
[10] 吴晓萍,曾耀英,贺芳. 腺病毒介导重组hKGF基因转染HaCat细胞及其表达[J]. 中国生物工程杂志, 2007, 27(3): 1-5.
[11] 金萍, 李玉新, 麻彤辉, 何孟元. 角质细胞生长因子的研究进展[J]. 中国生物工程杂志, 2001, 21(6): 34-37.